
Andrew Hacket-Pain

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8941025/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Meta-analysis Reveals Different Competition Effects on Tree Growth Resistance and Resilience to Drought. Ecosystems, 2022, 25, 30-43.	3.4	40
2	MASTREE+: Timeâ€series of plant reproductive effort from six continents. Global Change Biology, 2022, 28, 3066-3082.	9.5	19
3	Climate-change-driven growth decline of European beech forests. Communications Biology, 2022, 5, 163.	4.4	89
4	Jet stream position explains regional anomalies in European beech forest productivity and tree growth. Nature Communications, 2022, 13, 2015.	12.8	8
5	Globally, tree fecundity exceeds productivity gradients. Ecology Letters, 2022, 25, 1471-1482.	6.4	11
6	Limits to reproduction and seed size-number trade-offs that shape forest dominance and future recovery. Nature Communications, 2022, 13, 2381.	12.8	21
7	Growth of male and female Araucaria araucana trees respond differently to regional mast events, creating sex-specific patterns in their tree-ring chronologies. Ecological Indicators, 2021, 122, 107245.	6.3	13
8	Leaf phenology correlates with fruit production in European beech (Fagus sylvatica) and in temperate oaks (Quercus robur and Quercus petraea). European Journal of Forest Research, 2021, 140, 733-744.	2.5	8
9	Climate warming causes mast seeding to break down by reducing sensitivity to weather cues. Global Change Biology, 2021, 27, 1952-1961.	9.5	29
10	A new approach for modeling delayed fireâ€induced tree mortality. Ecosphere, 2021, 12, e03458.	2.2	5
11	Environmental variation drives continentalâ€scale synchrony of European beech reproduction. Ecology, 2021, 102, e03384.	3.2	19
12	Steps to diversify priorityâ€setting research in conservation: reflections on de Gracia 2021. Conservation Biology, 2021, 35, 1324-1326.	4.7	0
13	Masting. Current Biology, 2021, 31, R884-R885.	3.9	2
14	The ecology and evolution of synchronized reproduction in long-lived plants. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20200369.	4.0	36
15	Macroevolutionary consequences of mast seeding. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20200372.	4.0	11
16	Climate change and plant reproduction: trends and drivers of mast seeding change. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20200379.	4.0	33
17	Modes of climate variability bridge proximate and evolutionary mechanisms of masting. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20200380.	4.0	14
18	Climate teleconnections synchronize <i>Picea glauca</i> masting and fire disturbance: Evidence for a fireâ€related form of environmental prediction. Journal of Ecology, 2020, 108, 1186-1198.	4.0	35

ANDREW HACKET-PAIN

#	Article	IF	CITATIONS
19	Drivers of persistent post-fire recruitment in European beech forests. Science of the Total Environment, 2020, 699, 134006.	8.0	21
20	From theory to experiments for testing the proximate mechanisms of mast seeding: an agenda for an experimental ecology. Ecology Letters, 2020, 23, 210-220.	6.4	64
21	Climate Change Strengthens Selection for Mast Seeding in European Beech. Current Biology, 2020, 30, 3477-3483.e2.	3.9	31
22	What drives phenological synchrony? Warm springs advance and desynchronize flowering in oaks. Agricultural and Forest Meteorology, 2020, 294, 108140.	4.8	12
23	Lowest drought sensitivity and decreasing growth synchrony towards the dry distribution margin of European beech. Journal of Biogeography, 2020, 47, 1910-1921.	3.0	40
24	Reply to: Nutrient scarcity cannot cause mast seeding. Nature Plants, 2020, 6, 763-765.	9.3	6
25	Climate warming disrupts mast seeding and its fitness benefits in European beech. Nature Plants, 2020, 6, 88-94.	9.3	86
26	No systematic effects of sampling direction on climate-growth relationships in a large-scale, multi-species tree-ring data set. Dendrochronologia, 2019, 57, 125624.	2.2	20
27	Temperature and masting control Norway spruce growth, but with high individual tree variability. Forest Ecology and Management, 2019, 438, 142-150.	3.2	34
28	Nutrient scarcity as a selective pressure for mast seeding. Nature Plants, 2019, 5, 1222-1228.	9.3	53
29	Reproducing reproduction: How to simulate mast seeding in forest models. Ecological Modelling, 2018, 376, 40-53.	2.5	53
30	Climatically controlled reproduction drives interannual growth variability in a temperate tree species. Ecology Letters, 2018, 21, 1833-1844.	6.4	92
31	Tenâ€year assessment of the 100 priority questions for global biodiversity conservation. Conservation Biology, 2018, 32, 1457-1463.	4.7	19
32	Increased growth and reduced summer drought limitation at the southern limit of Fagus sylvatica L., despite regionally warmer and drier conditions. Dendrochronologia, 2017, 44, 22-30.	2.2	17
33	Two centuries of masting data for <scp>E</scp> uropean beech and <scp>N</scp> orway spruce across the <scp>E</scp> uropean continent. Ecology, 2017, 98, 1473-1473.	3.2	47
34	Spatial patterns and broadâ€scale weather cues of beech mast seeding in Europe. New Phytologist, 2017, 215, 595-608.	7.3	86
35	Inter-annual and decadal changes in teleconnections drive continental-scale synchronization of tree reproduction. Nature Communications, 2017, 8, 2205.	12.8	56
36	Drought and reproductive effort interact to control growth of a temperate broadleaved tree species (Fagus sylvatica). Tree Physiology, 2017, 37, 744-754.	3.1	40

3

#	Article	IF	CITATIONS
37	Modeling Tree Growth Taking into Account Carbon Source and Sink Limitations. Frontiers in Plant Science, 2017, 8, 182.	3.6	32
38	Consistent limitation of growth by high temperature and low precipitation from range core to southern edge of European beech indicates widespread vulnerability to changing climate. European Journal of Forest Research, 2016, 135, 897-909.	2.5	90
39	The influence of masting phenomenon on growth-climate relationships in trees: explaining the influence of previous summers' climate on ring width. Tree Physiology, 2015, 35, 319-330.	3.1	91