## **Christian Moestl**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/894093/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Propagation of Interplanetary Coronal Mass Ejections: The Drag-Based Model. Solar Physics, 2013, 285, 295-315.                                                                                                    | 2.5  | 257       |
| 2  | Observations of an extreme storm in interplanetary space caused by successive coronal mass ejections. Nature Communications, 2014, 5, 3481.                                                                       | 12.8 | 223       |
| 3  | CONNECTING SPEEDS, DIRECTIONS AND ARRIVAL TIMES OF 22 CORONAL MASS EJECTIONS FROM THE SUN TO 1 AU. Astrophysical Journal, 2014, 787, 119.                                                                         | 4.5  | 145       |
| 4  | Strong coronal channelling and interplanetary evolution of a solar storm up to Earth and Mars.<br>Nature Communications, 2015, 6, 7135.                                                                           | 12.8 | 142       |
| 5  | THE DEFLECTION OF THE TWO INTERACTING CORONAL MASS EJECTIONS OF 2010 MAY 23-24 AS REVEALED BY COMBINED IN SITU MEASUREMENTS AND HELIOSPHERIC IMAGING. Astrophysical Journal, 2012, 759, 68.                       | 4.5  | 137       |
| 6  | CHARACTERISTICS OF KINEMATICS OF A CORONAL MASS EJECTION DURING THE 2010 AUGUST 1 CME–CME<br>INTERACTION EVENT. Astrophysical Journal, 2012, 749, 57.                                                             | 4.5  | 127       |
| 7  | A SELF-SIMILAR EXPANSION MODEL FOR USE IN SOLAR WIND TRANSIENT PROPAGATION STUDIES.<br>Astrophysical Journal, 2012, 750, 23.                                                                                      | 4.5  | 120       |
| 8  | ON SUN-TO-EARTH PROPAGATION OF CORONAL MASS EJECTIONS. Astrophysical Journal, 2013, 769, 45.                                                                                                                      | 4.5  | 120       |
| 9  | MULTI-POINT SHOCK AND FLUX ROPE ANALYSIS OF MULTIPLE INTERPLANETARY CORONAL MASS EJECTIONS<br>AROUND 2010 AUGUST 1 IN THE INNER HELIOSPHERE. Astrophysical Journal, 2012, 758, 10.                                | 4.5  | 109       |
| 10 | The role of aerodynamic drag in propagation of interplanetary coronal mass ejections. Astronomy and Astrophysics, 2010, 512, A43.                                                                                 | 5.1  | 102       |
| 11 | INTERACTIONS BETWEEN CORONAL MASS EJECTIONS VIEWED IN COORDINATED IMAGING AND IN SITU OBSERVATIONS. Astrophysical Journal Letters, 2012, 746, L15.                                                                | 8.3  | 99        |
| 12 | Consequences of the force-free model of magnetic clouds for their heliospheric evolution. Journal of Geophysical Research, 2007, 112, n/a-n/a.                                                                    | 3.3  | 95        |
| 13 | Forecasting the Arrival Time of Coronal Mass Ejections: Analysis of the CCMC CME Scoreboard. Space<br>Weather, 2018, 16, 1245-1260.                                                                               | 3.7  | 94        |
| 14 | STEREO and Wind observations of a fast ICME flank triggering a prolonged geomagnetic storm on 5–7<br>April 2010. Geophysical Research Letters, 2010, 37, .                                                        | 4.0  | 92        |
| 15 | INFLUENCE OF THE AMBIENT SOLAR WIND FLOW ON THE PROPAGATION BEHAVIOR OF INTERPLANETARY CORONAL MASS EJECTIONS. Astrophysical Journal, 2011, 743, 101.                                                             | 4.5  | 92        |
| 16 | ESTABLISHING A STEREOSCOPIC TECHNIQUE FOR DETERMINING THE KINEMATIC PROPERTIES OF SOLAR WIND TRANSIENTS BASED ON A GENERALIZED SELF-SIMILARLY EXPANDING CIRCULAR GEOMETRY. Astrophysical Journal, 2013, 777, 167. | 4.5  | 88        |
| 17 | LINKING REMOTE IMAGERY OF A CORONAL MASS EJECTION TO ITS IN SITU SIGNATURES AT 1 AU.<br>Astrophysical Journal, 2009, 705, L180-L185.                                                                              | 4.5  | 84        |
| 18 | AN ANALYSIS OF THE ORIGIN AND PROPAGATION OF THE MULTIPLE CORONAL MASS EJECTIONS OF 2010<br>AUGUST 1. Astrophysical Journal, 2012, 750, 45.                                                                       | 4.5  | 82        |

| #  | Article                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Two-spacecraft reconstruction of a magnetic cloud and comparison to its solar source. Annales Geophysicae, 2008, 26, 3139-3152.                                                                                           | 1.6 | 79        |
| 20 | HELIOSPHERIC PROPAGATION OF CORONAL MASS EJECTIONS: COMPARISON OF NUMERICAL<br>WSA-ENLIL+CONE MODEL AND ANALYTICAL DRAG-BASED MODEL. Astrophysical Journal, Supplement<br>Series, 2014, 213, 21.                          | 7.7 | 76        |
| 21 | Speeds and Arrival Times of Solar Transients Approximated by Self-similar Expanding Circular Fronts.<br>Solar Physics, 2013, 285, 411-423.                                                                                | 2.5 | 73        |
| 22 | Optimized Grad – Shafranov Reconstruction ofÂaÂMagnetic Cloud Using STEREO-Wind Observations.<br>Solar Physics, 2009, 256, 427-441.                                                                                       | 2.5 | 69        |
| 23 | Magnetic Field Configuration Models and Reconstruction Methods for Interplanetary Coronal Mass<br>Ejections. Solar Physics, 2013, 284, 129-149.                                                                           | 2.5 | 69        |
| 24 | Multispacecraft Observations of Magnetic Clouds andÂTheir Solar Origins between 19 and 23 May 2007.<br>Solar Physics, 2009, 254, 325-344.                                                                                 | 2.5 | 68        |
| 25 | Modeling observations of solar coronal mass ejections with heliospheric imagers verified with the<br>Heliophysics System Observatory. Space Weather, 2017, 15, 955-970.                                                   | 3.7 | 65        |
| 26 | ElEvoHI: A NOVEL CME PREDICTION TOOL FOR HELIOSPHERIC IMAGING COMBINING AN ELLIPTICAL FRONT WITH DRAG-BASED MODEL FITTING. Astrophysical Journal, 2016, 824, 131.                                                         | 4.5 | 63        |
| 27 | Generic Magnetic Field Intensity Profiles of Interplanetary Coronal Mass Ejections at Mercury, Venus,<br>and Earth From Superposed Epoch Analyses. Journal of Geophysical Research: Space Physics, 2019, 124,<br>812-836. | 2.4 | 62        |
| 28 | The Influence of Coronal Mass Ejections on the Mass-loss Rates of Hot-Jupiters. Astrophysical Journal, 2017, 846, 31.                                                                                                     | 4.5 | 60        |
| 29 | The size distribution of magnetic bright points derived from Hinode/SOT observations. Astronomy and Astrophysics, 2009, 498, 289-293.                                                                                     | 5.1 | 57        |
| 30 | Multiple, distant (40°) in situ observations of a magnetic cloud and a corotating interaction region complex. Journal of Atmospheric and Solar-Terrestrial Physics, 2011, 73, 1254-1269.                                  | 1.6 | 56        |
| 31 | Multispacecraft recovery of a magnetic cloud and its origin from magnetic reconnection on the Sun.<br>Journal of Geophysical Research, 2009, 114, .                                                                       | 3.3 | 51        |
| 32 | ARRIVAL TIME CALCULATION FOR INTERPLANETARY CORONAL MASS EJECTIONS WITH CIRCULAR FRONTS AND APPLICATION TO <i>STEREO</i> OBSERVATIONS OF THE 2009 FEBRUARY 13 ERUPTION. Astrophysical Journal, 2011, 741, 34.             | 4.5 | 51        |
| 33 | A statistical analysis of properties of small transients in the solar wind 2007–2009: STEREO and Wind observations. Journal of Geophysical Research: Space Physics, 2014, 119, 689-708.                                   | 2.4 | 51        |
| 34 | Coronal Magnetic Structure of Earthbound CMEs and In Situ Comparison. Space Weather, 2018, 16, 442-460.                                                                                                                   | 3.7 | 51        |
| 35 | Self‧imilarity of ICME Flux Ropes: Observations by Radially Aligned Spacecraft in the Inner<br>Heliosphere. Journal of Geophysical Research: Space Physics, 2019, 124, 4960-4982.                                         | 2.4 | 48        |
| 36 | COMBINED MULTIPOINT REMOTE AND IN SITU OBSERVATIONS OF THE ASYMMETRIC EVOLUTION OF A FAST SOLAR CORONAL MASS EJECTION. Astrophysical Journal Letters, 2014, 790, L6.                                                      | 8.3 | 45        |

| #  | Article                                                                                                                                                                               | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Forward Modeling of Coronal Mass Ejection Flux Ropes in the Inner Heliosphere with 3DCORE. Space<br>Weather, 2018, 16, 216-229.                                                       | 3.7 | 45        |
| 38 | PROPAGATION OF THE 2014 JANUARY 7 CME AND RESULTING GEOMAGNETIC NON-EVENT. Astrophysical Journal, 2015, 812, 145.                                                                     | 4.5 | 43        |
| 39 | CME impact on comet 67P/Churyumov-Gerasimenko. Monthly Notices of the Royal Astronomical Society, 2016, 462, S45-S56.                                                                 | 4.4 | 42        |
| 40 | Constraining the Kinematics of Coronal Mass Ejections in the Inner Heliosphere with In-Situ<br>Signatures. Solar Physics, 2012, 276, 293-314.                                         | 2.5 | 40        |
| 41 | In situ multi-spacecraft and remote imaging observations of the first CME detected by Solar Orbiter and BepiColombo. Astronomy and Astrophysics, 2021, 656, A2.                       | 5.1 | 40        |
| 42 | ON THE INTERNAL STRUCTURE OF THE MAGNETIC FIELD IN MAGNETIC CLOUDS AND INTERPLANETARY CORONAL MASS EJECTIONS: WRITHE VERSUS TWIST. Astrophysical Journal Letters, 2011, 738, L18.     | 8.3 | 39        |
| 43 | SUN-TO-EARTH CHARACTERISTICS OF THE 2012 JULY 12 CORONAL MASS EJECTION AND ASSOCIATED GEO-EFFECTIVENESS. Astrophysical Journal, 2016, 829, 97.                                        | 4.5 | 39        |
| 44 | CMEs in the Heliosphere: I. A Statistical Analysis of the Observational Properties of CMEs Detected in the Heliosphere from 2007 to 2017 by STEREO/HI-1. Solar Physics, 2018, 293, 1. | 2.5 | 36        |
| 45 | Heliospheric Imaging of 3D Density Structures During the Multiple Coronal Mass Ejections of Late July<br>to Early August 2010. Solar Physics, 2013, 285, 317-348.                     | 2.5 | 34        |
| 46 | Heliospheric Evolution of Magnetic Clouds. Astrophysical Journal, 2019, 877, 77.                                                                                                      | 4.5 | 34        |
| 47 | A comparison of space weather analysis techniques used to predict the arrival of the Earthâ€directed<br>CME and its shockwave launched on 8 April 2010. Space Weather, 2011, 9, .     | 3.7 | 30        |
| 48 | PREDICTION OF GEOMAGNETIC STORM STRENGTH FROM INNER HELIOSPHERIC IN SITU OBSERVATIONS.<br>Astrophysical Journal, 2016, 833, 255.                                                      | 4.5 | 28        |
| 49 | Ensemble Prediction of a Halo Coronal Mass Ejection Using Heliospheric Imagers. Space Weather, 2018, 16, 784-801.                                                                     | 3.7 | 27        |
| 50 | Prediction of the In Situ Coronal Mass Ejection Rate for Solar Cycle 25: Implications for Parker Solar<br>Probe In Situ Observations. Astrophysical Journal, 2020, 903, 92.           | 4.5 | 27        |
| 51 | Dynamics of Magnetic Bright Points in an Active Region. Solar Physics, 2006, 237, 13-23.                                                                                              | 2.5 | 26        |
| 52 | On the formation of tilted flux ropes in the Earth's magnetotail observed with ARTEMIS. Journal of<br>Geophysical Research, 2012, 117, .                                              | 3.3 | 26        |
| 53 | Correlation of ICME Magnetic Fields at Radially Aligned Spacecraft. Solar Physics, 2018, 293, 52.                                                                                     | 2.5 | 26        |
| 54 | Long-Term Tracking of Corotating Density Structures Using Heliospheric Imaging. Solar Physics, 2016, 291, 1853-1875.                                                                  | 2.5 | 25        |

4

| #  | Article                                                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | CMEs in the Heliosphere: II. A Statistical Analysis of the Kinematic Properties Derived from<br>Single-Spacecraft Geometrical Modelling Techniques Applied to CMEs Detected in the Heliosphere<br>from 2007 to 2017 by STEREO/HI-1. Solar Physics, 2019, 294, 1. | 2.5 | 25        |
| 56 | Forecasting the Ambient Solar Wind with Numerical Models. I. On the Implementation of an Operational Framework. Astrophysical Journal, Supplement Series, 2019, 240, 35.                                                                                         | 7.7 | 25        |
| 57 | Multipoint Interplanetary Coronal Mass Ejections Observed with Solar Orbiter, BepiColombo, Parker<br>Solar Probe, Wind, and STEREO-A. Astrophysical Journal Letters, 2022, 924, L6.                                                                              | 8.3 | 25        |
| 58 | First observations of magnetic holes deep within the coma of a comet. Astronomy and Astrophysics, 2018, 618, A114.                                                                                                                                               | 5.1 | 24        |
| 59 | Forecasting the Ambient Solar Wind with Numerical Models. II. An Adaptive Prediction System for<br>Specifying Solar Wind Speed near the Sun. Astrophysical Journal, 2020, 891, 165.                                                                              | 4.5 | 24        |
| 60 | Analysis of Coronal Mass Ejection Flux Rope Signatures Using 3DCORE and Approximate Bayesian<br>Computation. Astrophysical Journal, Supplement Series, 2021, 252, 9.                                                                                             | 7.7 | 24        |
| 61 | Coronal Dimmings and the Early Phase of a CME Observed with STEREO and Hinode/EIS. Solar Physics, 2011, 273, 125-142.                                                                                                                                            | 2.5 | 23        |
| 62 | Interplanetary and geomagnetic consequences of 5 January 2005 CMEs associated with eruptive filaments. Journal of Geophysical Research: Space Physics, 2013, 118, 3954-3967.                                                                                     | 2.4 | 22        |
| 63 | Atmospheric Mass Loss from Hot Jupiters Irradiated by Stellar Superflares. Astrophysical Journal, 2018, 869, 108.                                                                                                                                                | 4.5 | 22        |
| 64 | Unusual Plasma and Particle Signatures at Mars and STEREO-A Related to CME–CME Interaction.<br>Astrophysical Journal, 2019, 880, 18.                                                                                                                             | 4.5 | 22        |
| 65 | Evaluation of CME Arrival Prediction Using Ensemble Modeling Based on Heliospheric Imaging Observations. Space Weather, 2021, 19, e2020SW002553.                                                                                                                 | 3.7 | 21        |
| 66 | Heliospheric Observations of STEREO-Directed Coronal Mass Ejections in 2008 – 2010: Lessons for<br>Future Observations of Earth-Directed CMEs. Solar Physics, 2012, 279, 497-515.                                                                                | 2.5 | 20        |
| 67 | Evolution of Coronal Mass Ejections and the Corresponding Forbush Decreases: Modeling vs.<br>Multi-Spacecraft Observations. Solar Physics, 2020, 295, 1.                                                                                                         | 2.5 | 18        |
| 68 | CME Magnetic Structure and IMF Preconditioning Affecting SEP Transport. Space Weather, 2021, 19, e2020SW002654.                                                                                                                                                  | 3.7 | 18        |
| 69 | The role of magnetic handedness in magnetic cloud propagation. Annales Geophysicae, 2010, 28, 1075-1100.                                                                                                                                                         | 1.6 | 17        |
| 70 | Solar origins of a strong stealth CME detected by Solar Orbiter. Astronomy and Astrophysics, 2021, 656, L6.                                                                                                                                                      | 5.1 | 16        |
| 71 | The Observational Uncertainty of Coronal Hole Boundaries in Automated Detection Schemes.<br>Astrophysical Journal, 2021, 913, 28.                                                                                                                                | 4.5 | 16        |
| 72 | Magnetic Structure and Propagation of Two Interacting CMEs From the Sun to Saturn. Journal of Geophysical Research: Space Physics, 2021, 126, .                                                                                                                  | 2.4 | 16        |

| #  | Article                                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | CMEs and SEPs During November–December 2020: A Challenge for Realâ€Time Space Weather Forecasting.<br>Space Weather, 2022, 20, .                                                                                                                             | 3.7 | 16        |
| 74 | Effect of Electron Pressure on the Grad–Shafranov Reconstruction of Interplanetary Coronal Mass<br>Ejections. Solar Physics, 2013, 284, 275-291.                                                                                                             | 2.5 | 15        |
| 75 | COMPARISON OF MAGNETIC PROPERTIES IN A MAGNETIC CLOUD AND ITS SOLAR SOURCE ON 2013 APRIL<br>11–14. Astrophysical Journal, 2016, 828, 12.                                                                                                                     | 4.5 | 15        |
| 76 | The Influence of a Stellar Flare on the Dynamical State of the Atmosphere of the Exoplanet HD 209458b. Astronomy Reports, 2018, 62, 648-653.                                                                                                                 | 0.9 | 15        |
| 77 | Radial evolution of the April 2020 stealth coronal mass ejection between 0.8 and 1 AU. Astronomy and Astrophysics, 2021, 656, A1.                                                                                                                            | 5.1 | 15        |
| 78 | Using Gradient Boosting Regression to Improve Ambient Solar Wind Model Predictions. Space<br>Weather, 2021, 19, e2020SW002673.                                                                                                                               | 3.7 | 15        |
| 79 | CMEs in the Heliosphere: III. A Statistical Analysis of the Kinematic Properties Derived from<br>Stereoscopic Geometrical Modelling Techniques Applied to CMEs Detected in the Heliosphere from<br>2008 to 2014 by STEREO/HI-1. Solar Physics, 2020, 295, 1. | 2.5 | 13        |
| 80 | Dragâ€Based CME Modeling With Heliospheric Images Incorporating Frontal Deformation: ELEvoHI 2.0.<br>Space Weather, 2021, 19, e2021SW002836.                                                                                                                 | 3.7 | 13        |
| 81 | Machine Learning for Predicting the B <sub>z</sub> Magnetic Field Component From Upstream in Situ<br>Observations of Solar Coronal Mass Ejections. Space Weather, 2021, 19, e2021SW002859.                                                                   | 3.7 | 13        |
| 82 | The structure of an earthward propagating magnetic flux rope early in its evolution: comparison of methods. Annales Geophysicae, 2009, 27, 2215-2224.                                                                                                        | 1.6 | 12        |
| 83 | Assessing the Constrained Harmonic Mean Method for Deriving the Kinematics of ICMEs with a<br>Numerical Simulation. Solar Physics, 2013, 283, 541-556.                                                                                                       | 2.5 | 12        |
| 84 | Why are ELEvoHI CME Arrival Predictions Different if Based on STEREOâ€A or STEREOâ€B Heliospheric<br>Imager Observations?. Space Weather, 2021, 19, e2020SW002674.                                                                                           | 3.7 | 11        |
| 85 | A Coronal Mass Ejection and Magnetic Ejecta Observed In Situ by STEREO-A and Wind at 55° Angular<br>Separation. Astrophysical Journal, 2022, 929, 149.                                                                                                       | 4.5 | 11        |
| 86 | Prediction of <i>Dst</i> During Solar Minimum Using In Situ Measurements at L5. Space<br>Weather, 2020, 18, e2019SW002424.                                                                                                                                   | 3.7 | 10        |
| 87 | The Influence of Superflares of Host Stars on the Dynamics of the Envelopes of Hot Jupiters.<br>Astronomy Reports, 2019, 63, 94-106.                                                                                                                         | 0.9 | 9         |
| 88 | Tracking and Validating ICMEs Propagating Toward Mars Using STEREO Heliospheric Imagers Combined<br>With Forbush Decreases Detected by MSL/RAD. Space Weather, 2019, 17, 586-598.                                                                            | 3.7 | 9         |
| 89 | Forecasting GICs and Geoelectric Fields From Solar Wind Data Using LSTMs: Application in Austria.<br>Space Weather, 2022, 20, .                                                                                                                              | 3.7 | 9         |
| 90 | Multi-spacecraft Observations of the Evolution of Interplanetary Coronal Mass Ejections between 0.3 and 2.2 au: Conjunctions with the Juno Spacecraft. Astrophysical Journal, 2022, 933, 127.                                                                | 4.5 | 9         |

| #   | Article                                                                                                                                                                                                                                                            | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Connecting Coronal Mass Ejections and Magnetic Clouds: A Case Study Using an Event from 22 June 2009. Solar Physics, 2012, 281, 369.                                                                                                                               | 2.5 | 8         |
| 92  | A Catalog of Interplanetary Coronal Mass Ejections Observed by Juno between 1 and 5.4 au.<br>Astrophysical Journal, 2021, 923, 136.                                                                                                                                | 4.5 | 8         |
| 93  | Unifying the validation of ambient solar wind models. Advances in Space Research, 2023, 72, 5275-5286.                                                                                                                                                             | 2.6 | 7         |
| 94  | Quantifying the Uncertainty in CME Kinematics Derived From Geometric Modeling of Heliospheric<br>Imager Data. Space Weather, 2022, 20, .                                                                                                                           | 3.7 | 6         |
| 95  | A Fast Bow Shock Location Predictorâ€Estimator From 2D and 3D Analytical Models: Application to Mars<br>and the MAVEN Mission. Journal of Geophysical Research: Space Physics, 2022, 127, .                                                                        | 2.4 | 6         |
| 96  | The Magnetic Field Geometry of Small Solar Wind Flux Ropes Inferred from Their Twist Distribution.<br>Solar Physics, 2018, 293, 1.                                                                                                                                 | 2.5 | 5         |
| 97  | Making Waves: Mirror Mode Structures Around Mars Observed by the MAVEN Spacecraft. Journal of Geophysical Research: Space Physics, 2022, 127, .                                                                                                                    | 2.4 | 5         |
| 98  | Deep Solar Activity Minimum 2007 – 2009: Solar Wind Properties and Major Effects on the Terrestrial<br>Magnetosphere. Solar Physics, 2012, 281, 461.                                                                                                               | 2.5 | 4         |
| 99  | An Ensemble Study of a January 2010 Coronal Mass Ejection (CME): Connecting a Non-obvious Solar<br>Source with Its ICME/Magnetic Cloud. Solar Physics, 2014, 289, 4173-4208.                                                                                       | 2.5 | 4         |
| 100 | Predicting CMEs Using ELEvoHI With STEREOâ€HI Beacon Data. Space Weather, 2021, 19, e2021SW002873.                                                                                                                                                                 | 3.7 | 3         |
| 101 | Comparing the Heliospheric Cataloging, Analysis, and Techniques Service (HELCATS) Manual and<br>Automatic Catalogues of Coronal Mass Ejections Using Solar Terrestrial Relations<br>Observatory/Heliospheric Imager (STEREO/HI) Data. Solar Physics, 2022, 297, 1. | 2.5 | 3         |
| 102 | Evolution of the 5 January 2005 CMEs associated with eruptive filaments in inner heliosphere.<br>Proceedings of the International Astronomical Union, 2013, 8, 491-492.                                                                                            | 0.0 | 1         |