
Karen Lienkamp

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/894071/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	"Just Antimicrobial is not Enough―Revisited—From Antimicrobial Polymers to Microstructured Dualâ€Functional Surfaces, Selfâ€Regenerating Polymer Surfaces, and Polymer Materials with Switchable Bioactivity. Macromolecular Chemistry and Physics, 2022, 223, .	1.1	1
2	Progress in the Free and Controlled Radical Homo―and Coâ€Polymerization of Itaconic Acid Derivatives: Toward Functional Polymers with Controlled Molar Mass Distribution and Architecture. Macromolecular Rapid Communications, 2021, 42, e2000546.	2.0	30
3	Stimulusâ€Responsive Polyelectrolyte Surfaces: Switching Surface Properties from Polycationic/Antimicrobial to Polyzwitterionic/Proteinâ€Repellent. Macromolecular Rapid Communications, 2021, 42, e2100051.	2.0	9
4	How Do Polymer Coatings Affect the Growth and Bacterial Population of a Biofilm Formed by Total Human Salivary Bacteria?—A Study by 16S-RNA Sequencing. Microorganisms, 2021, 9, 1427.	1.6	2
5	Stimulus-Responsive Polyzwitterionic Surfaces Made from Itaconic Acid: Self-Triggered Antimicrobial Activity, Protein Repellency, and Cell Compatibility. ACS Applied Materials & Interfaces, 2020, 12, 21242-21253.	4.0	20
6	Bioinspired Allâ€Polyester Diblock Copolymers Made from Poly(pentadecalactone) and Poly(2â€(2â€hydroxyethoxy)benzoate): Synthesis and Polymer Film Properties. Macromolecular Chemistry and Physics, 2020, 221, 2000118.	1.1	3
7	Degradable Polymer Films Made from Poly(salicylicâ€acid―co â€sebacic acid) and Poly(sebacic) Tj ETQq1 1 0.74 Polymer Multilayer Systems. Macromolecular Chemistry and Physics, 2020, 221, 2000106.	84314 rgB 1.1	T /Overlock 1 4
8	Bioinspired Allâ€Polyester Diblock Copolymers Made from Poly(pentadecalactone) and Poly(3â€hydroxycinnamate): Synthesis and Polymer Film Properties. Macromolecular Chemistry and Physics, 2020, 221, 2000045.	1.1	1
9	Polyzwitterions: From Surface Properties and Bioactivity Profiles to Biomedical Applications. ACS Applied Polymer Materials, 2020, 2, 129-151.	2.0	52
10	Poly(oxanorbornene)-Coated CdTe Quantum Dots as Antibacterial Agents. ACS Applied Bio Materials, 2020, 3, 1097-1104.	2.3	11
11	Waferâ€Scale Fabrication of Conducting Polymer Hydrogels for Microelectrodes and Flexible Bioelectronics. Advanced Biology, 2019, 3, e1900072.	3.0	16
12	Degradation of Polymer Films on Surfaces: A Model Study with Poly(sebacic anhydride). Macromolecular Chemistry and Physics, 2019, 220, 1900121.	1.1	6
13	Bifunctional Bioactive Polymer Surfaces with Micrometer and Submicrometer-sized Structure: The Effects of Structure Spacing and Elastic Modulus on Bioactivity. Molecules, 2019, 24, 3371.	1.7	6
14	Antibacterial Activity of Polymers: Discussions on the Nature of Amphiphilic Balance. Angewandte Chemie, 2019, 131, 3728-3731.	1.6	29
15	Electrochemically Controlled Drug Release from a Conducting Polymer Hydrogel (PDMAAp/PEDOT) for Local Therapy and Bioelectronics. Advanced Healthcare Materials, 2019, 8, e1801488.	3.9	71
16	Surface Structuring Combined with Chemical Surface Functionalization: An Effective Tool to Manipulate Cell Adhesion. Molecules, 2019, 24, 909.	1.7	5
17	Selfâ€Regenerating Antimicrobial Polymer Surfaces via Multilayerâ€Design—Sequential and Triggered Layer Shedding under Physiological Conditions. Advanced Materials Interfaces, 2019, 6, 1802049.	1.9	14
18	Quantified Membrane Permeabilization Indicates the Lipid Selectivity of Membrane-Active Antimicrobials. Langmuir, 2019, 35, 16366-16376.	1.6	17

Karen Lienkamp

#	Article	IF	CITATIONS
19	Asymmetrically Substituted Poly(diitaconates) Obtained by Reversible Additionâ€Fragmentation Chain Transfer (RAFT) Polymerization: Synthesis, Copolymerization Parameters, and Antimicrobial Activity. Macromolecular Chemistry and Physics, 2019, 220, 1900346.	1.1	8
20	Three-Dimensional, Bifunctional Microstructured Polymer Hydrogels Made from Polyzwitterions and Antimicrobial Polymers. Langmuir, 2019, 35, 1211-1226.	1.6	19
21	Antibacterial Activity of Polymers: Discussions on the Nature of Amphiphilic Balance. Angewandte Chemie - International Edition, 2019, 58, 3690-3693.	7.2	90
22	Synthesis and Bioactivity of Polymerâ€Based Synthetic Mimics of Antimicrobial Peptides (SMAMPs) Made from Asymmetrically Disubstituted Itaconates. Chemistry - A European Journal, 2018, 24, 8217-8227.	1.7	20
23	Submicrometer-Sized, 3D Surface-Attached Polymer Networks by Microcontact Printing: Using UV-Cross-Linking Efficiency To Tune Structure Height. Macromolecules, 2018, 51, 1409-1417.	2.2	9
24	Surface Properties and Antimicrobial Activity of Poly(sulfurâ€ <i>co</i> â€1,3â€diisopropenylbenzene) Copolymers. Macromolecular Chemistry and Physics, 2018, 219, 1700497.	1.1	48
25	Surface-attached poly(phosphoester)-hydrogels with benzophenone groups. Polymer Chemistry, 2018, 9, 315-326.	1.9	23
26	Structure–Property Relationships of Amine-rich and Membrane-Disruptive Poly(oxonorbornene)-Coated Gold Nanoparticles. Langmuir, 2018, 34, 4614-4625.	1.6	13
27	Surface-Attached Poly(oxanorbornene) Hydrogels with Antimicrobial and Protein-Repellent Moieties: The Quest for Simultaneous Dual Activity. Materials, 2018, 11, 1411.	1.3	9
28	Nonâ€Đelaminating Polymer Hydrogel Coatings via C,Hâ€insertion Crosslinking (CHic)—A Case Study of Poly(oxanorbornenes). Macromolecular Chemistry and Physics, 2018, 219, 1800397.	1.1	6
29	Antimicrobial Selectivity and Membrane Leakage Mechanisms: The Role of Lipids. Biophysical Journal, 2018, 114, 377a.	0.2	1
30	Simultaneously Antimicrobial, Protein-Repellent, and Cell-Compatible Polyzwitterion Networks: More Insight on Bioactivity and Physical Properties. ACS Applied Bio Materials, 2018, 1, 613-626.	2.3	16
31	A Degradable and Antimicrobial Surfaceâ€Attached Polymer Hydrogel. Macromolecular Chemistry and Physics, 2018, 219, 1800198.	1.1	6
32	A Simultaneously Antimicrobial, Protein-Repellent, and Cell-Compatible Polyzwitterion Network. Biomacromolecules, 2017, 18, 1373-1386.	2.6	58
33	Surface Structuring Meets Orthogonal Chemical Modifications: Toward a Technology Platform for Site-Selectively Functionalized Polymer Surfaces and BioMEMS. ACS Biomaterials Science and Engineering, 2017, 3, 909-921.	2.6	15
34	Lipid Clustering by Antimicrobial Polymers and Lectins. Biophysical Journal, 2017, 112, 381a.	0.2	1
35	Polymerâ€Based Surfaces Designed to Reduce Biofilm Formation: From Antimicrobial Polymers to Strategies for Longâ€Term Applications. Macromolecular Rapid Communications, 2017, 38, 1700216.	2.0	68
36	An interpenetrating, microstructurable and covalently attached conducting polymer hydrogel for neural interfaces. Acta Biomaterialia, 2017, 58, 365-375.	4.1	70

Karen Lienkamp

#	Article	IF	CITATIONS
37	Fluorescent ROMP Monomers and Copolymers for Biomedical Applications. Macromolecular Chemistry and Physics, 2017, 218, 1700273.	1.1	18
38	On the Limits of Benzophenone as Cross-Linker for Surface-Attached Polymer Hydrogels. Polymers, 2017, 9, 686.	2.0	32
39	Just Antimicrobial is not Enough: Toward Bifunctional Polymer Surfaces with Dual Antimicrobial and Proteinâ€Repellent Functionality. Macromolecular Chemistry and Physics, 2016, 217, 225-231.	1.1	43
40	Anionic Lipid Content Presents a Barrier to the Activity of ROMP-Based Synthetic Mimics of Protein Transduction Domains (PTDMs). Langmuir, 2016, 32, 5946-5954.	1.6	5
41	Synthetic Mimics of Antimicrobial Peptides (SMAMPs) in Layerâ€byâ€Layer Architectures: Possibilities and Limitations. Macromolecular Chemistry and Physics, 2016, 217, 2154-2164.	1.1	10
42	Toward Self-Regenerating Antimicrobial Polymer Surfaces. ACS Macro Letters, 2015, 4, 1337-1340.	2.3	28
43	Antimicrobial and cell-compatible surface-attached polymer networks – how the correlation of chemical structure to physical and biological data leads to a modified mechanism of action. Journal of Materials Chemistry B, 2015, 3, 6224-6238.	2.9	48
44	Development of a Standardized and Safe Airborne Antibacterial Assay, and Its Evaluation on Antibacterial Biomimetic Model Surfaces. PLoS ONE, 2014, 9, e111357.	1.1	23
45	Nature-Inspired Antimicrobial Polymers – Assessment of Their Potential for Biomedical Applications. PLoS ONE, 2013, 8, e73812.	1.1	57
46	CHAPTER 5. Polymer-Based Synthetic Mimics of Antimicrobial Peptides (SMAMPs) – A New Class of Nature-Inspired Antimicrobial Agents with Low Bacterial Resistance Formation Potential. RSC Polymer Chemistry Series, 2013, , 97-138.	0.1	3
47	It takes walls and knights to defend a castle – synthesis of surface coatings from antimicrobial and antibiofouling polymers. Journal of Materials Chemistry, 2012, 22, 19579.	6.7	71
48	Neue Polymere gegen multiresistente Bakterien. Nachrichten Aus Der Chemie, 2011, 59, 719-723.	0.0	1
49	End-Functionalized ROMP Polymers for Biomedical Applications. Macromolecules, 2010, 43, 4557-4561.	2.2	72
50	Antibacterial Peptidomimetics: Polymeric Synthetic Mimics of Antimicrobial Peptides. Advances in Polymer Science, 2010, , 141-172.	0.4	30
51	Construction of Redispersible Polypyrrole Core–Shell Nanoparticles for Application in Polymer Electronics. Advanced Materials, 2009, 21, 1137-1141.	11.1	60
52	"Doubly Selective―Antimicrobial Polymers: How Do They Differentiate between Bacteria?. Chemistry - A European Journal, 2009, 15, 11710-11714.	1.7	138
53	Synthetic Mimics of Antimicrobial Peptides—A Versatile Ringâ€Opening Metathesis Polymerization Based Platform for the Synthesis of Selective Antibacterial and Cellâ€Penetrating Polymers. Chemistry - A European Journal, 2009, 15, 11784-11800.	1.7	142
54	Antimicrobial Polymers Prepared by Ringâ€Opening Metathesis Polymerization: Manipulating Antimicrobial Properties by Organic Counterion and Charge Density Variation. Chemistry - A European Journal, 2009, 15, 11715-11722.	1.7	112

KAREN LIENKAMP

#	Article	IF	CITATIONS
55	Waterâ€soluble polymers from acidâ€functionalized norbornenes. Journal of Polymer Science Part A, 2009, 47, 1266-1273.	2.5	35
56	Water soluble poly(ethylene oxide) functionalized norbornene polymers. Journal of Polymer Science Part A, 2008, 46, 2640-2648.	2.5	53
57	Waterâ€soluble ROMP polymers from amineâ€functionalized norbornenes. Journal of Polymer Science Part A, 2008, 46, 6672-6676.	2.5	36
58	Selfâ€Assembled Structures in Organogels of Amphiphilic Diblock Codendrimers. Chemistry - A European Journal, 2008, 14, 3330-3337.	1.7	38
59	Antimicrobial Polymers Prepared by ROMP with Unprecedented Selectivity: A Molecular Construction Kit Approach. Journal of the American Chemical Society, 2008, 130, 9836-9843.	6.6	380
60	Synthesis and Characterization of End-Functionalized Cylindrical Polyelectrolyte Brushes from Poly(styrene sulfonate). Macromolecules, 2007, 40, 2486-2502.	2.2	38
61	Highly Conductive Polypyrrole Copolymers?. Macromolecular Rapid Communications, 2007, 28, 1112-1114.	2.0	5
62	Polymerization of Styrene Sulfonate Ethyl Ester and Styrene Sulfonate Dodecyl Ester by ATRP: Synthesis and Characterization of Polymer Brushes. Macromolecular Chemistry and Physics, 2006, 207, 2050-2065.	1.1	33
63	Polymerization of Styrene Sulfonate Ethyl Ester by ATRP: Synthesis and Characterization of Macromonomers for Suzuki Polycondensation. Macromolecular Chemistry and Physics, 2006, 207, 2066-2073.	1.1	29
64	Selfâ€Regenerating of Functional Polymer Surfaces by Triggered Layer Shedding Using a Stimulusâ€Responsive Poly(urethane). Macromolecular Chemistry and Physics, 0, , 2100127.	1.1	2