Yuanqing Sun

List of Publications by Citations

Source: https://exaly.com/author-pdf/8940431/yuanqing-sun-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

23 590 12 24 g-index

24 739 6.3 3.76 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
23	pH- and Temperature-Sensitive Hydrogel Nanoparticles with Dual Photoluminescence for Bioprobes. <i>ACS Nano</i> , 2016 , 10, 5856-63	16.7	156
22	Roles of Surface-Active Oxygen Species on 3DOM Cobalt-Based Spinel Catalysts MxCo3NO4 (M = Zn and Ni) for NOx-Assisted Soot Oxidation. <i>ACS Catalysis</i> , 2019 , 9, 7548-7567	13.1	85
21	Redlemitting and highly stable carbon dots with dual response to pHIValues and ferric ions. <i>Mikrochimica Acta</i> , 2018 , 185, 83	5.8	69
20	Rapid Sonochemical Synthesis of Luminescent and Paramagnetic Copper Nanoclusters for Bimodal Bioimaging. <i>ChemNanoMat</i> , 2015 , 1, 27-31	3.5	43
19	Nanoclusters prepared from a silver/gold alloy as a fluorescent probe for selective and sensitive determination of lead(II). <i>Mikrochimica Acta</i> , 2015 , 182, 695-701	5.8	36
18	Morphology-controlled synthesis of TiO2/MoS2 nanocomposites with enhanced visible-light photocatalytic activity. <i>Inorganic Chemistry Frontiers</i> , 2018 , 5, 145-152	6.8	29
17	Tunable near-infrared fluorescent gold nanoclusters: temperature sensor and targeted bioimaging. <i>New Journal of Chemistry</i> , 2017 , 41, 5412-5419	3.6	26
16	Simultaneous removal of NO and soot particulates from diesel engine exhaust by 3DOM FelMn oxide catalysts. <i>Journal of Industrial and Engineering Chemistry</i> , 2018 , 63, 84-94	6.3	21
15	Cu-SAPO-18 for NH3-SCR Reaction: The Effect of Different Aging Temperatures on Cu2+ Active Sites and Catalytic Performances. <i>Industrial & Engineering Chemistry Research</i> , 2019 , 58, 2389-2395	3.9	19
14	Polycation-functionalized gold nanodots with tunable near-infrared fluorescence for simultaneous gene delivery and cell imaging. <i>Nano Research</i> , 2018 , 11, 2392-2404	10	15
13	Ordered Mesoporous CeO2-supported Ag as an Effective Catalyst for Carboxylative Coupling Reaction Using CO2. <i>ChemCatChem</i> , 2019 , 11, 2089-2098	5.2	14
12	Fluorometric III urn-Onliglucose sensing through the in situ generation of silver nanoclusters. <i>RSC Advances</i> , 2017 , 7, 1396-1400	3.7	13
11	Fluorescence-Magnetism Functional EuS Nanocrystals with Controllable Morphologies for Dual Bioimaging. <i>ACS Applied Materials & Acs Applied </i>	9.5	12
10	A facile strategy for the synthesis of ferroferric oxide/titanium dioxide/molybdenum disulfide heterostructures as a magnetically separable photocatalyst under visible-light. <i>Journal of Colloid and Interface Science</i> , 2018 , 516, 138-144	9.3	10
9	Red fluorescent AuNDs with conjugation of cholera toxin subunit B (CTB) for extended-distance retro-nerve transporting and long-time neural tracing. <i>Acta Biomaterialia</i> , 2020 , 102, 394-402	10.8	9
8	Biomass-derived nitrogen self-doped porous activation carbon as an effective bifunctional electrocatalysts. <i>Chinese Chemical Letters</i> , 2021 , 32, 92-98	8.1	9
7	Fluorescent small Au nanodots prepared from large Ag nanoparticles for targeting and imaging cancer cells. <i>RSC Advances</i> , 2015 , 5, 52088-52094	3.7	7

LIST OF PUBLICATIONS

6	Tunable luminescence in full color region based on CdSe/EuxSey hybrid nanocrystals. <i>RSC Advances</i> , 2013 , 3, 22849	3.7	6
5	Fe/Beta@Meso-CeO2 Nanostructure CoreBhell Catalyst: Remarkable Enhancement of Potassium Poisoning Resistance. <i>Catalysis Surveys From Asia</i> , 2018 , 22, 181-194	2.8	4
4	Fluorescent probe gold nanodots to quick detect Cr(VI) via oxidoreduction quenching process. <i>Science China Chemistry</i> , 2019 , 62, 133-141	7.9	3
3	Ultra-small nanodots coated with oligopeptides providing highly negative charges to enhance osteogenic differentiation of hBMSCs better than osteogenic induction medium. <i>Chinese Chemical Letters</i> , 2021 , 32, 266-270	8.1	2
2	Preparation and Characterization of CaO/ZnO Core-shell Structured Nanoparticles. <i>Chemical Research in Chinese Universities</i> , 2020 , 36, 970-975	2.2	1
1	Breaking the scaling relationship via dual metal doping in a cobalt spinel for the OER: a computational prediction. <i>Physical Chemistry Chemical Physics</i> , 2020 , 22, 18672-18680	3.6	1