Maik Butterling

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8940051/publications.pdf

Version: 2024-02-01

430442 500791 103 1,206 18 28 citations g-index h-index papers 105 105 105 1460 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Design and Construction of a Slow Positron Beam for Solid and Surface Investigations. Defect and Diffusion Forum, 0, 331, 25-40.	0.4	76
2	Chemical manipulation of hydrogen induced high p-type and n-type conductivity in Ga2O3. Scientific Reports, 2020, 10, 6134.	1.6	65
3	Open volume defects and magnetic phase transition in Fe60Al40 transition metal aluminide. Journal of Applied Physics, 2015, 117 , .	1.1	61
4	Positron annihilation lifetime and Doppler broadening spectroscopy at the ELBE facility. AIP Conference Proceedings, 2018, , .	0.3	60
5	Voltage-Controlled ON–OFF Ferromagnetism at Room Temperature in a Single Metal Oxide Film. ACS Nano, 2018, 12, 10291-10300.	7.3	57
6	Nanocavity formation and hardness increase by dual ion beam irradiation of oxide dispersion strengthened FeCrAl alloy. Journal of Nuclear Materials, 2012, 427, 133-139.	1.3	45
7	Nuclear Deformation and Neutron Excess as Competing Effects for Dipole Strength in the Pygmy Region. Physical Review Letters, 2014, 112, 072501.	2.9	43
8	Voltage-driven motion of nitrogen ions: a new paradigm for magneto-ionics. Nature Communications, 2020, 11, 5871.	5.8	42
9	Gamma-induced Positron Spectroscopy (GiPS) at a superconducting electron linear accelerator. Nuclear Instruments & Methods in Physics Research B, 2011, 269, 2623-2629.	0.6	35
10	A new mechanism for void-cascade interaction from nondestructive depth-resolved atomic-scale measurements of ion irradiation–induced defects in Fe. Science Advances, 2020, 6, eaba8437.	4.7	32
11	Vacancy complexes in nonequilibrium germanium-tin semiconductors. Applied Physics Letters, 2019, 114,	1.5	30
12	Vacancy cluster in ZnO films grown by pulsed laser deposition. Scientific Reports, 2019, 9, 3534.	1.6	26
13	A new system for real-time data acquisition and pulse parameterization for digital positron annihilation lifetime spectrometers with high repetition rates. Journal of Instrumentation, 2021, 16, P08001.	0.5	25
14	Enhanced flux pinning isotropy by tuned nanosized defect network in superconducting YBa2Cu3O6+x films. Scientific Reports, 2019, 9, 15425.	1.6	24
15	Oxidation of amorphous HfNbTaTiZr high entropy alloy thin films prepared by DC magnetron sputtering. Journal of Alloys and Compounds, 2021, 869, 157978.	2.8	24
16	Positron spectroscopy of point defects in the skyrmion-lattice compound MnSi. Scientific Reports, 2016, 6, 29109.	1.6	23
17	Magnetic response of FeRh to static and dynamic disorder. RSC Advances, 2020, 10, 14386-14395.	1.7	21
18	Release of helium from vacancy defects in yttria-stabilized zirconia under irradiation. Physical Review B, 2012, 86, .	1.1	19

#	Article	IF	CITATIONS
19	Sb-related defects in Sb-doped ZnO thin film grown by pulsed laser deposition. Journal of Applied Physics, 2018, 123, .	1.1	19
20	Experimental elucidation of vacancy complexes associated with hydrogen ion-induced splitting of bulk GaN. Physical Review B, 2010, 81, .	1.1	18
21	Boosting Roomâ€Temperature Magnetoâ€Ionics in a Nonâ€Magnetic Oxide Semiconductor. Advanced Functional Materials, 2020, 30, 2003704.	7.8	18
22	Identification of defect properties by positron annihilation in Te-doped GaAs after Cu in-diffusion. Physical Review B, 2011, 84, .	1.1	17
23	Vacancy-Hydrogen Interaction in Niobium during Low-Temperature Baking. Scientific Reports, 2020, 10, 8300.	1.6	17
24	Depth selective magnetic phase coexistence in FeRh thin films. APL Materials, 2020, 8, .	2.2	15
25	The role of open-volume defects in the annihilation of antisites in a B2-ordered alloy. Acta Materialia, 2019, 176, 167-176.	3.8	14
26	Exploring point defects and trap states in undoped SrTiO3 single crystals. Journal of the European Ceramic Society, 2022, 42, 1510-1521.	2.8	14
27	From a non-magnet to a ferromagnet: Mn+ implantation into different TiO2 structures. Applied Physics Letters, 2015, 107, .	1.5	13
28	Magneto-Ionics in Single-Layer Transition Metal Nitrides. ACS Applied Materials & Samp; Interfaces, 2021, 13, 30826-30834.	4.0	13
29	Formation and time dynamics of hydrogen-induced vacancies in nickel. Acta Materialia, 2021, 219, 117264.	3.8	13
30	Defect Nanostructure and its Impact on Magnetism of α â€Cr ₂ O ₃ Thin Films. Small, 2022, 18, e2201228.	5.2	13
31	Point and extended defects in heteroepitaxial $\hat{l}^2\hat{a}^2$ Ga2O3 films. Physical Review Materials, 2020, 4, .	0.9	12
32	First Experiments with MePS. Journal of Physics: Conference Series, 2013, 443, 012088.	0.3	11
33	Effect of roughness and nanoporosity on optical properties of black and reflective Al films prepared by magnetron sputtering. Journal of Alloys and Compounds, 2021, 872, 159744.	2.8	11
34	Positron annihilation spectroscopy using highâ€energy photons. Physica Status Solidi (A) Applications and Materials Science, 2010, 207, 334-337.	0.8	10
35	Positron Annihilation Studies on the Damp Heat Degradation of ZnO:Al Transparent Conductive Oxide Layers for CIGS Solar Cells. IEEE Journal of Photovoltaics, 2018, 8, 1847-1851.	1.5	10
36	Photon induced positron annihilation spectroscopy: A nondestructive method for assay of defects in large engineering materials. Nuclear Instruments & Methods in Physics Research B, 2012, 270, 128-132.	0.6	9

3

#	ARTICLE g the anti-site disorder and oxygen vacancies in Sr <mml:math <="" id="d1e281" inline"="" th="" xmins:mmi="http://www.w3.org/1998/Math/Math/Math/Mit display="><th>IF</th><th>Citations</th></mml:math>	IF	Citations
37	altimg="si7.svg"> <mml:msub><mml:mrow< td=""><td>1.0</td><td>9</td></mml:mrow<></mml:msub>	1.0	9
38	Progress of the EPOS project: Gammaâ€induced Positron Spectroscopy (GiPS). Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, 2451-2455.	0.8	8
39	Account of the intratrack radiolytic processes for interpretation of the AMOC spectrum of liquid water. Journal of Physics: Conference Series, 2013, 443, 012057.	0.3	8
40	Positron annihilation analysis of nanopores and growth mechanism of oblique angle evaporated TiO2 and SiO2 thin films and multilayers. Microporous and Mesoporous Materials, 2020, 295, 109968.	2.2	8
41	Zinc Oxide Defect Microstructure and Surface Chemistry Derived from Oxidation of Metallic Zinc: Thinâ€Film Transistor and Sensor Behavior of ZnO Films and Rods. Chemistry - A European Journal, 2021, 27, 5422-5431.	1.7	8
42	Use of superconducting linacs for positron generation: the EPOS system at the Forschungszentrum Dresden-Rossendorf (FZD). Journal of Physics: Conference Series, 2011, 262, 012003.	0.3	7
43	Nature of the Positron State in CdSe Quantum Dots. Physical Review Letters, 2018, 121, 057401.	2.9	7
44	On defects' role in enhanced perpendicular magnetic anisotropy in Pt/Co/Pt, induced by ion irradiation. Journal of Physics Condensed Matter, 2019, 31, 185801.	0.7	7
45	Characterisation of micropores in plasma deposited SiO <i> </i> films by means of positron annihilation lifetime spectroscopy. Journal Physics D: Applied Physics, 2020, 53, 475205.	1.3	7
46	Evolution and role of vacancy clusters at grain boundaries of ZnO:Al during accelerated degradation of Cu(In,Ga)Se2 solar cells revealed by positron annihilation. Physical Review Materials, 2018, 2, .	0.9	7
47	Evaluation of a microchannel-plate PMT as a potential timing detector suitable for positron lifetime measurements. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2010, 624, 641-645.	0.7	6
48	Ferromagnetism and structural defects in Vâ€doped titanium dioxide. Physica Status Solidi C: Current Topics in Solid State Physics, 2014, 11, 1106-1109.	0.8	6
49	Positron-Annihilation Lifetime Spectroscopy using Electron Bremsstrahlung. Journal of Physics: Conference Series, 2015, 618, 012042.	0.3	6
50	Electric and magnetic dipole strength in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mmultiscripts><mml:mi>Fe</mml:mi><mml:mprescripts><mml:mn>54</mml:mn></mml:mprescripts></mml:mmultiscripts></mml:math> . Physical Review C, 2020, 101, .	ripts	6
51	Critical Role of Electrical Resistivity in Magnetoionics. Physical Review Applied, 2021, 16, .	1.5	6
52	Phase evolution of Te-hyperdoped Si upon furnace annealing. Applied Surface Science, 2021, 567, 150755.	3.1	6
53	Light-driven permanent transition from insulator to conductor. Physical Review B, 2021, 104, .	1.1	6
54	Nanoscaled LiMn ₂ O ₄ for Extended Cycling Stability in the 3 V Plateau. ACS Applied Materials & Description (2008)	4.0	6

#	Article	IF	CITATIONS
55	Investigation of Dual-Beam-Implanted Oxide-Dispersed-Strengthened FeCrAl Alloy by Positron Annihilation Spectroscopy. Defect and Diffusion Forum, 2012, 331, 149-163.	0.4	5
56	Ultrathin Co films with Pt and Au coversâ€"magnetic and structural properties driven by Ga ⁺ ion irradiation. New Journal of Physics, 2021, 23, 023015.	1.2	5
57	Microstructure and Nanoscopic Porosity in Black Pd Films. Acta Physica Polonica A, 2020, 137, 222-226.	0.2	5
58	Study of Nanoscopic Porosity in Black Metals by Positron Annihilation Spectroscopy. Acta Physica Polonica B, 2020, 51, 383.	0.3	5
59	Influence of surface activation on the microporosity of PEâ€CVD and PEâ€ALD SiO _{<i>x</i>} thin films on PDMS. Plasma Processes and Polymers, 2022, 19, .	1.6	5
60	Magnetism and Magnetoelectricity of Textured Polycrystalline Bulk Cr ₂ O ₃ Sintered in Conditions Far out of Equilibrium. ACS Applied Electronic Materials, 2022, 4, 2943-2952.	2.0	5
61	Unravelling the Origin of Ultra‣ow Conductivity in SrTiO ₃ Thin Films: Sr Vacancies and Ti on Aâ€Sites Cause Fermi Level Pinning. Advanced Functional Materials, 2022, 32, .	7.8	5
62	Annihilation Lifetime Spectroscopy Using Positrons from Bremsstrahlung Production. Defect and Diffusion Forum, 2012, 331, 41-52.	0.4	4
63	Flash lamp annealing of tungsten surfaces marks a new way to optimized slow positron yields. Journal of Physics: Conference Series, 2013, 443, 012072.	0.3	4
64	Formation of heavy clusters in ion-irradiated compounds. Vacuum, 2019, 164, 149-152.	1.6	4
65	Thermal kinetics of free volume in porous spin-on dielectrics: Exploring the network- and pore-properties. Microporous and Mesoporous Materials, 2020, 308, 110457.	2.2	4
66	Electrical and optical properties in O-polar and Zn-polar ZnO films grown by pulsed laser deposition. Thin Solid Films, 2020, 711, 138303.	0.8	4
67	Cation non-stoichiometry in Fe:SrTiO ₃ thin films and its effect on the electrical conductivity. Nanoscale Advances, 2021, 3, 6114-6127.	2.2	4
68	Electric and magnetic dipole strength in Zn66. Physical Review C, 2021, 103, .	1,1	4
69	Tuned AFM–FM coupling by the formation of vacancy complex in Gd _{0.6} Ca _{0.4} MnO ₃ thin film lattice. Journal of Physics Condensed Matter, 2021, 33, 255803.	0.7	4
70	Dissolution of donor-vacancy clusters in heavily doped n-type germanium. New Journal of Physics, 2020, 22, 123036.	1,2	4
71	The mechanism behind the high radiation tolerance of Fe–Cr alloys. Journal of Applied Physics, 2022, 131, .	1.1	4
72	Ion Intercalation in Lanthanum Strontium Ferrite for Aqueous Electrochemical Energy Storage Devices. ACS Applied Materials & Samp; Interfaces, 2022, 14, 18486-18497.	4.0	4

#	Article	IF	CITATIONS
73	Study of Neutron Induced Defects in Ceramics using the GiPS Facility. Journal of Physics: Conference Series, 2013, 443, 012076.	0.3	3
74	Threshold concentration for ion implantation-induced Co nanocluster formation in TiO 2 :Co thin films. Nuclear Instruments & Methods in Physics Research B, 2016, 389-390, 13-16.	0.6	3
75	Ferromagnetism in undoped ZnO grown by pulsed laser deposition. Materials Research Express, 2020, 7, 056102.	0.8	3
76	Mapping the Structure of Oxygen-Doped Wurtzite Aluminum Nitride Coatings from <i>Ab Initio</i> Random Structure Search and Experiments. ACS Applied Materials & Diterfaces, 2021, 13, 5762-5771.	4.0	3
77	Positron Structural Analysis of ScN Films Deposited on MgO Substrate. Acta Physica Polonica A, 2020, 137, 209-214.	0.2	3
78	Defects in Thin Layers of High Entropy Alloy HfNbTaTiZr. Acta Physica Polonica A, 2020, 137, 219-221.	0.2	3
79	Radiation damage evolution in pure W and W-Cr-Hf alloy caused by 5ÂMeV Au ions in a broad range of dpa. Nuclear Materials and Energy, 2021, 29, 101085.	0.6	3
80	Modification of Porous Ultralow- $\langle i \rangle k \langle i \rangle$ Film by Vacuum Ultraviolet Emission. ACS Applied Electronic Materials, 2022, 4, 2760-2776.	2.0	3
81	Application of Positron Annihilation Spectroscopy to the Study of Irradiated Fe-Cr Alloys. Defect and Diffusion Forum, 2012, 331, 165-179.	0.4	2
82	Investigation of H ⁺ implanted Fe-Al alloys. Journal of Physics: Conference Series, 2014, 505, 012013.	0.3	2
83	The Evidence of Quasi-Free Positronium State in GiPS-AMOC Spectra of Glycerol. Acta Physica Polonica A, 2014, 125, 821-824.	0.2	2
84	Tomographic Positron Annihilation Lifetime Spectroscopy. Journal of Physics: Conference Series, 2014, 505, 012034.	0.3	2
85	Metal oxide double layer capacitors by electrophoretic deposition of metal oxides. Fabrication, electrical characterization and defect analysis using positron annihilation spectroscopy. Journal of Materials Chemistry C, 2018, 6, 9501-9509.	2.7	2
86	An experimental investigation of light emission produced in the process of positronium formation in matter. Physical Chemistry Chemical Physics, 2021, 23, 11264-11271.	1.3	2
87	Strongly Enhanced Growth of High-Temperature Superconducting Films on an Advanced Metallic Template. Crystal Growth and Design, 2022, 22, 2097-2104.	1.4	2
88	The impact of high hydrostatic pressure maintenance after high-pressure torsion on phenomena during high hydrostatic pressure annealing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 840, 142874.	2.6	2
89	Monte-Carlo simulations for timing-system of EPOS at ELBE in Research Centre Dresden-Rossendorf. Journal of Physics: Conference Series, 2011, 265, 012027.	0.3	1
90	Low Background Digital Coincidence Spectrometer $\hat{a}\in$ A Tool for Investigation of Positron Annihilation in Flight. Defect and Diffusion Forum, 0, 331, 53-73.	0.4	1

#	Article	IF	CITATIONS
91	Optimization of growth parameters of TiO ₂ thin films using a slow positron beam. Journal of Physics: Conference Series, 2013, 443, 012073.	0.3	1
92	Positron annihilation in flight: experiment with slow and fast positrons. Journal of Physics: Conference Series, 2014, 505, 012043.	0.3	1
93	New insights into the nanostructure of innovative thin film solar cells gained by positron annihilation spectroscopy. Journal of Physics: Conference Series, 2017, 791, 012021.	0.3	1
94	Depth Resolved Measurements of Atomic Scale Defects in Ion Irradiated Fe Alloys. Microscopy and Microanalysis, 2019, 25, 1546-1547.	0.2	1
95	Ion-induced processes in polymer composite materials: Positron annihilation spectroscopy in combination with UV-Vis absorption and Raman spectroscopy. AIP Conference Proceedings, 2019, , .	0.3	1
96	A secret luminescence killer in deepest QWs of InGaN/GaN multiple quantum well structures. Journal of Crystal Growth, 2020, 536, 125579.	0.7	1
97	Structural Characterisation of Er Implanted, Ge-Rich SiO ₂ Layers Using Slow Positron Implantation Spectroscopy. Materials Science Forum, 2010, 666, 41-45.	0.3	0
98	Position-resolved Positron Annihilation Lifetime Spectroscopy. Journal of Physics: Conference Series, 2013, 443, 012091.	0.3	0
99	Solution synthesis and dielectric properties of alumina thin films: understanding the role of the organic additive in film formation. Dalton Transactions, 2021, 50, 8811-8819.	1.6	O
100	Zinc Oxide Defect Microstructure and Surface Chemistry Derived from Oxidation of Metallic Zinc. Thin Film Transistor and Sensoric Behaviour of ZnO Films and Rods. Chemistry - A European Journal, 2021, 27, 5312-5312.	1.7	0
101	Defect Characterization Using Positron Annihilation Spectroscopy on Laser-Ablated Surfaces. Jom, 2021, 73, 4221.	0.9	0
102	Fundamental studies on the curing behavoir of porous CVD and spin-on dielectrics. , 2020, , .		0
103	Manipulating magnetic and magnetoresistive properties by oxygen vacancy complexes in GCMO thin films. Journal of Physics Condensed Matter, 2022, 34, 155804.	0.7	O