
Katherine L Mcneill

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8939871/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Supporting Students' Construction of Scientific Explanations by Fading Scaffolds in Instructional Materials. Journal of the Learning Sciences, 2006, 15, 153-191.	2.9	518
2	A learning progression for scientific argumentation: Understanding student work and designing supportive instructional contexts. Science Education, 2010, 94, 765-793.	3.0	323
3	Learningâ€goalsâ€driven design model: Developing curriculum materials that align with national standards and incorporate projectâ€based pedagogy. Science Education, 2008, 92, 1-32.	3.0	242
4	Scientific explanations: Characterizing and evaluating the effects of teachers' instructional practices on student learning. Journal of Research in Science Teaching, 2008, 45, 53-78.	3.3	232
5	Elementary students' views of explanation, argumentation, and evidence, and their abilities to construct arguments over the school year. Journal of Research in Science Teaching, 2011, 48, 793-823.	3.3	163
6	Teachers' use of curriculum to support students in writing scientific arguments to explain phenomena. Science Education, 2009, 93, 233-268.	3.0	143
7	Synergy Between Teacher Practices and Curricular Scaffolds to Support Students in Using Domain-Specific and Domain-General Knowledge in Writing Arguments to Explain Phenomena. Journal of the Learning Sciences, 2009, 18, 416-460.	2.9	141
8	Teachers' Pedagogical Content Knowledge of Scientific Argumentation: The Impact of Professional Development on K-12 Teachers. Science Education, 2013, 97, 936-972.	3.0	126
9	Scientific discourse in three urban classrooms: The role of the teacher in engaging high school students in argumentation. Science Education, 2010, 94, 203-229.	3.0	121
10	Conducting Talk in Secondary Science Classrooms: Investigating Instructional Moves and Teachers' Beliefs. Science Education, 2013, 97, 367-394.	3.0	108
11	Examining the effect of teachers' adaptations of a middle school science inquiryâ€oriented curriculum unit on student learning. Journal of Research in Science Teaching, 2011, 48, 149-169.	3.3	106
12	Urban High School Students' Critical Science Agency: Conceptual Understandings and Environmental Actions Around Climate Change. Research in Science Education, 2012, 42, 373-399.	2.3	82
13	Pedagogical content knowledge of argumentation: Using classroom contexts to assess highâ€quality PCK rather than pseudoargumentation. Journal of Research in Science Teaching, 2016, 53, 261-290.	3.3	76
14	For whom is argument and explanation a necessary distinction? A response to Osborne and Patterson. Science Education, 2012, 96, 808-813.	3.0	65
15	Learning in a community of practice: Factors impacting englishâ€learning students' engagement in scientific argumentation. Journal of Research in Science Teaching, 2016, 53, 527-553.	3.3	65
16	Moving Beyond Pseudoargumentation: Teachers' Enactments of an Educative Science Curriculum Focused on Argumentation. Science Education, 2017, 101, 426-457.	3.0	58
17	Key challenges and future directions for educational research on scientific argumentation. Journal of Research in Science Teaching, 2018, 55, 5-18.	3.3	56
18	What is (or should be) scientific evidence use in kâ€12 classrooms?. Journal of Research in Science Teaching, 2017, 54, 672-689.	3.3	55

KATHERINE L MCNEILL

#	Article	IF	CITATIONS
19	Factors impacting teachers' argumentation instruction in their science classrooms. International Journal of Science Education, 2016, 38, 2026-2046.	1.9	53
20	The Impact of High School Science Teachers' Beliefs, Curricular Enactments and Experience on Student Learning During an Inquiry-based Urban Ecology Curriculum. International Journal of Science Education, 2013, 35, 2608-2644.	1.9	50
21	An exploration of teacher learning from an educative reform-oriented science curriculum: Case studies of teacher curriculum use. Journal of Research in Science Teaching, 2017, 54, 141-168.	3.3	47
22	Teachers' framing of argumentation goals: Working together to develop individual versus communal understanding. Journal of Research in Science Teaching, 2019, 56, 821-844.	3.3	44
23	Teachers' Pedagogical Design Capacity for Scientific Argumentation. Science Education, 2016, 100, 645-672.	3.0	42
24	Acting with epistemic agency: Characterizing student critique during argumentation discussions. Science Education, 2020, 104, 953-982.	3.0	32
25	Instructional leadership in the era of the NGSS: Principals' understandings of science practices. Science Education, 2018, 102, 452-473.	3.0	31
26	Toward a Lived Science Curriculum in Intersecting Figured Worlds: An Exploration of Individual Meanings in Science Education. Journal of Research in Science Teaching, 2013, 50, 501-529.	3.3	25
27	Teachers' enactments of curriculum: <i>Fidelity to Procedure</i> versus <i>Fidelity to Goal</i> for scientific argumentation. International Journal of Science Education, 2018, 40, 1455-1475.	1.9	25
28	Becoming an urban science teacher: How beginning teachers negotiate contradictory school contexts. Journal of Research in Science Teaching, 2020, 57, 3-32.	3.3	23
29	Scientific Argumentation for All? Comparing Teacher Beliefs About Argumentation in High, Mid, and Low Socioeconomic Status Schools. Science Education, 2016, 100, 410-436.	3.0	22
30	†Does it answer the question or is it French fries?': an exploration of language supports for scientific argumentation. International Journal of Science Education, 2017, 39, 528-547.	1.9	22
31	Developing Research-Based Instructional Materials to Support Large-Scale Transformation of Science Teaching and Learning: The Approach of the OpenSciEd Middle School Program. Journal of Science Teacher Education, 2021, 32, 780-804.	2.5	22
32	Connecting Urban Youth with their Environment: The Impact of an Urban Ecology Course on Student Content Knowledge, Environmental Attitudes and Responsible Behaviors. Research in Science Education, 2012, 42, 1007-1026.	2.3	20
33	An analysis of science instruction for the science practices: Examining coherence across system levels and components in current systems of science education in Kâ€8 schools. Science Education, 2020, 104, 446-478.	3.0	20
34	Redesign or relabel?ÂHow a commercial curriculum and its implementation oversimplify key features of the NGSS. Science Education, 2021, 105, 5-32.	3.0	20
35	Multimedia Educative Curriculum Materials (MECMs): Teachers' Choices in Using MECMs Designed to Support Scientific Argumentation. Journal of Science Teacher Education, 2017, 28, 36-56.	2.5	15
36	Assessment at the Intersection of Science and Literacy. Theory Into Practice, 2015, 54, 228-237.	1.6	9

KATHERINE L MCNEILL

#	Article	IF	CITATIONS
37	Considering discussion types to support collective sensemaking during a storyline unit. Journal of Research in Science Teaching, 2022, 59, 195-222.	3.3	8
38	Subject-Specific Instructional Leadership in K8 Schools: The Supervision of Science in an Era of Reform. Leadership and Policy in Schools, 2019, 18, 460-484.	1.5	7
39	The impact of multimedia educative curriculum materials (MECMs) on teachers' beliefs about scientific argumentation. Technology, Pedagogy and Education, 2019, 28, 173-190.	5.4	6
40	Professional development to support principals' vision of science instruction: Building from their prior experiences to support the science practices. Journal of Research in Science Teaching, 2022, 59, 3-29.	3.3	6
41	Planning for student-driven discussions: A revelatory case of curricular sensemaking for epistemic agency. Journal of the Learning Sciences, 2022, 31, 408-457.	2.9	6
42	How Science Teachers DiALoG Classrooms: Towards a Practical and Responsive Formative Assessment of Oral Argumentation. Journal of Science Education and Technology, 2021, 30, 803-815.	3.9	4
43	Secondary science students' beliefs about class discussions: a case study comparing and contrasting academic tracks. International Journal of Science Education, 2016, 38, 2047-2068.	1.9	1
44	Developing Educative Materials to Support Middle-School Science Teachers' PCK for Argumentation: Comparing Multimedia to Text-Based Supports. Advances in STEM Education, 2018, , 241-264.	0.5	0