Mandy Brigitte Esch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/893977/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multi-Organ toxicity demonstration in a functional human in vitro system composed of four organs. Scientific Reports, 2016, 6, 20030.	1.6	337
2	Oral exposure to polystyrene nanoparticles affects iron absorption. Nature Nanotechnology, 2012, 7, 264-271.	15.6	293
3	Body-on-a-chip simulation with gastrointestinal tract and liver tissues suggests that ingested nanoparticles have the potential to cause liver injury. Lab on A Chip, 2014, 14, 3081-3092.	3.1	225
4	Microfabricated mammalian organ systems and their integration into models of whole animals and humans. Lab on A Chip, 2013, 13, 1201.	3.1	201
5	Characterization of a gastrointestinal tract microscale cell culture analog used to predict drug toxicity. Biotechnology and Bioengineering, 2009, 104, 193-205.	1.7	199
6	Modular, pumpless body-on-a-chip platform for the co-culture of GI tract epithelium and 3D primary liver tissue. Lab on A Chip, 2016, 16, 2719-2729.	3.1	167
7	On chip porous polymer membranes for integration of gastrointestinal tract epithelium with microfluidic â€~body-on-a-chip' devices. Biomedical Microdevices, 2012, 14, 895-906.	1.4	157
8	Multi-cellular 3D human primary liver cell culture elevates metabolic activity under fluidic flow. Lab on A Chip, 2015, 15, 2269-2277.	3.1	136
9	How multi-organ microdevices can help foster drug development. Advanced Drug Delivery Reviews, 2014, 69-70, 158-169.	6.6	134
10	Using physiologically-based pharmacokinetic-guided "body-on-a-chip―systems to predict mammalian response to drug and chemical exposure. Experimental Biology and Medicine, 2014, 239, 1225-1239.	1.1	118
11	Modeling Barrier Tissues In Vitro: Methods, Achievements, and Challenges. EBioMedicine, 2016, 5, 30-39.	2.7	94
12	Detection of ViableCryptosporidiumparvumUsing DNA-Modified Liposomes in a Microfluidic Chip. Analytical Chemistry, 2001, 73, 2952-2958.	3.2	79
13	Influence of master fabrication techniques on the characteristics of embossed microfluidic channels. Lab on A Chip, 2003, 3, 121.	3.1	76
14	Detection ofCryptosporidiumparvumUsing Oligonucleotide-Tagged Liposomes in a Competitive Assay Format. Analytical Chemistry, 2001, 73, 3162-3167.	3.2	59
15	Integration of <i>in silico</i> and <i>in vitro</i> platforms for pharmacokinetic–pharmacodynamic modeling. Expert Opinion on Drug Metabolism and Toxicology, 2010, 6, 1063-1081.	1.5	54
16	Characterization of <i>In Vitro</i> Endothelial Linings Grown Within Microfluidic Channels. Tissue Engineering - Part A, 2011, 17, 2965-2971.	1.6	53
17	Biodegradable Biliverdin Nanoparticles for Efficient Photoacoustic Imaging. ACS Nano, 2019, 13, 7690-7704.	7.3	51
18	Self-contained, low-cost Body-on-a-Chip systems for drug development. Experimental Biology and Medicine, 2017, 242, 1701-1713.	1.1	50

2

Mandy Brigitte Esch

#	Article	IF	CITATIONS
19	Promises, challenges and future directions of μCCAs. Journal of Biotechnology, 2010, 148, 64-69.	1.9	25
20	Body-on-a chip: Using microfluidic systems to predict human responses to drugs. Pure and Applied Chemistry, 2010, 82, 1635-1645.	0.9	22
21	Pumpless microfluidic devices for generating healthy and diseased endothelia. Lab on A Chip, 2019, 19, 3212-3219.	3.1	22
22	Endothelial retention and phenotype on carbonized cardiovascular implant surfaces. Biomaterials, 2014, 35, 7714-7723.	5.7	21
23	Bulk-state and single-particle imaging are central to understanding carbon dot photo-physics and elucidating the effects of precursor composition and reaction temperature. Carbon, 2019, 145, 572-585.	5.4	20
24	Lymphatic Vessel on a Chip with Capability for Exposure to Cyclic Fluidic Flow. ACS Applied Bio Materials, 2020, 3, 6697-6707.	2.3	17
25	Critical Considerations for the Design of Multi-Organ Microphysiological Systems (MPS). Frontiers in Cell and Developmental Biology, 2021, 9, 721338.	1.8	17
26	Electron and X-ray Focused Beam-Induced Cross-Linking in Liquids: Toward Rapid Continuous 3D Nanoprinting and Interfacing using Soft Materials. ACS Nano, 2020, 14, 12982-12992.	7.3	16
27	Near-infrared emitting dual-stimuli-responsive carbon dots from endogenous bile pigments. Nanoscale, 2021, 13, 13487-13496.	2.8	14
28	Body-on-a-Chip Systems for Animal-free Toxicity Testing. ATLA Alternatives To Laboratory Animals, 2016, 44, 469-478.	0.7	12
29	Body-in-a-Cube: a microphysiological system for multi-tissue co-culture with near-physiological amounts of blood surrogate. Microphysiological Systems, 2020, 4, 1-1.	2.0	9
30	Fabrication and Use of a Pumpless Microfluidic Lymphatic Vessel Chip. Methods in Molecular Biology, 2022, 2373, 177-199.	0.4	4
31	A Conceptual Framework for the Development of a Course in Nano/Micro-Scale Systems Engineering. Journal of Nano Education (Print), 2013, 5, 115-123.	0.3	0