Claudia Meisina

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8939740/publications.pdf

Version: 2024-02-01

		471509	3	395702
50	1,216	17		33
papers	citations	h-index		g-index
			ľ	
E.C.	F.C.	Г.С		1250
56	56	56		1358
all docs	docs citations	times ranked		citing authors

#	Article	IF	CITATIONS
1	3D Engineering Geological Modeling to Investigate a Liquefaction Site: An Example in Alluvial Holocene Sediments in the Po Plain, Italy. Geosciences (Switzerland), 2022, 12, 155.	2.2	2
2	ValInSAR: A Systematic Approach for the Validation of Differential SAR Interferometry in Land Subsidence Areas. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15, 3650-3671.	4.9	2
3	Stakeholders' Perspective on Groundwater Management in Four Water-Stressed Mediterranean Areas: Priorities and Challenges. Land, 2022, 11, 738.	2.9	5
4	Mapping soil liquefaction susceptibility across Europe using the analytic hierarchy process. Bulletin of Earthquake Engineering, 2022, 20, 5601-5632.	4.1	4
5	Hydrological regimes in different slope environments and implications on rainfall thresholds triggering shallow landslides. Natural Hazards, 2022, 114, 907-939.	3.4	4
6	A Geospatial Approach for Mapping the Earthquake-Induced Liquefaction Risk at the European Scale. Geosciences (Switzerland), $2021,11,32.$	2.2	10
7	Improving Spatial Landslide Prediction with 3D Slope Stability Analysis and Genetic Algorithm Optimization: Application to the Oltrep $ ilde{A}^2$ Pavese. Water (Switzerland), 2021, 13, 801.	2.7	22
8	A Data-Driven Method for the Temporal Estimation of Soil Water Potential and Its Application for Shallow Landslides Prediction. Water (Switzerland), 2021, 13, 1208.	2.7	5
9	Post-Failure Dynamics of Rainfall-Induced Landslide in Oltrep \tilde{A}^2 Pavese. Water (Switzerland), 2020, 12, 2555.	2.7	8
10	The influence of the inventory on the determination of the rainfall-induced shallow landslides susceptibility using generalized additive models. Catena, 2020, 193, 104630.	5.0	60
11	Assessment of the Sentinel-1 based ground motion data feasibility for large scale landslide monitoring. Landslides, 2020, 17, 2287-2299.	5.4	15
12	Advances and Practices on the Research, Prevention and Control of Land Subsidence in Coastal Cities. Acta Geologica Sinica, 2020, 94, 162-175.	1.4	10
13	3D groundwater flow and deformation modelling of Madrid aquifer. Journal of Hydrology, 2020, 585, 124773.	5.4	14
14	Implementation and Use of a Mechanical Cone Penetration Test Database for Liquefaction Hazard Assessment of the Coastal Area of the Tuscany Region. Geosciences (Switzerland), 2020, 10, 128.	2.2	4
15	Litho-structure of the Oltrepo Pavese, Northern Apennines (Italy). Journal of Maps, 2019, 15, 382-392.	2.0	7
16	Integrating Satellite Soil Moisture and Rainfall Data on a Data-Driven Model for the Assessment of Shallow Landslides Hazard. Proceedings (mdpi), 2019, 30, .	0.2	0
17	Advances in Shallow Landslide Hydrology and Triggering Mechanisms: A Multidisciplinary Approach. Geofluids, 2019, 2019, 1-2.	0.7	1
18	Empirical and Physically Based Thresholds for the Occurrence of Shallow Landslides in a Prone Area of Northern Italian Apennines. Water (Switzerland), 2019, 11, 2653.	2.7	36

#	Article	IF	Citations
19	Soil Saturation and Stability Analysis of a Test Site Slope Using the Shallow Landslide Instability Prediction (SLIP) Model. Geotechnical and Geological Engineering, 2018, 36, 2331-2342.	1.7	13
20	A methodology for ground motion area detection (GMA-D) using A-DInSAR time series in landslide investigations. Catena, 2018, 163, 89-110.	5.0	20
21	The role of human activities on sediment connectivity of shallow landslides. Catena, 2018, 160, 261-274.	5.0	93
22	A Methodology to Detect and Characterize Uplift Phenomena in Urban Areas Using Sentinel-1 Data. Remote Sensing, 2018, 10, 607.	4.0	28
23	Analysis by UAV Digital Photogrammetry of Folds and Related Fractures in the Monte Antola Flysch Formation (Ponte Organasco, Italy). Geosciences (Switzerland), 2018, 8, 299.	2.2	15
24	A Simplified Approach to Assess the Soil Saturation Degree and Stability of a Representative Slope Affected by Shallow Landslides in Oltrep \tilde{A}^2 Pavese (Italy). Geosciences (Switzerland), 2018, 8, 472.	2.2	16
25	Preliminary Validation of a Novel Method for the Assessment of Effective Stress State in Partially Saturated Soils by Cone Penetration Tests. Geosciences (Switzerland), 2018, 8, 30.	2.2	18
26	Estimation of the susceptibility of a road network to shallow landslides with the integration of the sediment connectivity. Natural Hazards and Earth System Sciences, 2018, 18, 1735-1758.	3.6	32
27	Landslide state of activity maps by combining multi-temporal A-DInSAR (LAMBDA). Remote Sensing of Environment, 2018, 217, 172-190.	11.0	31
28	Analysis of Hydro-meteorological Monitoring Data Collected in Different Contexts Prone to Shallow Landslides of the Oltrep \tilde{A}^2 Pavese (Northern Italy). , 2017, , 357-364.		1
29	Integration of Multi-sensor A-DInSAR Data for Landslide Inventory Update. , 2017, , 133-142.		1
30	Shallow landslides susceptibility assessment in different environments. Geomatics, Natural Hazards and Risk, 2017, 8, 748-771.	4.3	48
31	From ERS-1/2 to Sentinel-1: two decades of subsidence monitored through A-DInSAR techniques in the Ravenna area (Italy). GIScience and Remote Sensing, 2017, 54, 305-328.	5.9	44
32	The role of land use changes in the distribution of shallow landslides. Science of the Total Environment, 2017, 574, 924-937.	8.0	105
33	Exploitation of Satellite A-DInSAR Time Series for Detection, Characterization and Modelling of Land Subsidence. Geosciences (Switzerland), 2017, 7, 25.	2.2	20
34	Methodology for Detection and Interpretation of Ground Motion Areas with the A-DInSAR Time Series Analysis. Remote Sensing, 2016, 8, 686.	4.0	35
35	Assessing the daedalus sensor's performance by means of spectral mixture analysis in the Migliarino, San Rossore, Massaciuccoli Regional Park (Italy). , 2015, , .		0
36	A User-Oriented Methodology for DInSAR Time Series Analysis and Interpretation: Landslides and Subsidence Case Studies. Pure and Applied Geophysics, 2015, 172, 3081-3105.	1.9	46

#	Article	IF	CITATIONS
37	Twenty-year advanced DInSAR analysis of severe land subsidence: The Alto GuadalentÃn Basin (Spain) case study. Engineering Geology, 2015, 198, 40-52.	6.3	67
38	Map and Monitoring Slow Ground Deformation in NW Italy Using PSI Techniques. , 2015, , 141-145.		1
39	Monitoring and Modelling of Soil–Atmosphere Interaction on a Slope Affected by Shallow Landslides. , 2015, , 1563-1566.		0
40	Non Linear PS Time Series: Analysis and Post-Processing for Landslides Studies. Lecture Notes in Earth System Sciences, 2014, , 245-248.	0.6	1
41	Predictive Power Evaluation of a Physically Based Model for Shallow Landslides in the Area of OltrepÃ ² Pavese, Northern Italy. Geotechnical and Geological Engineering, 2014, 32, 783-805.	1.7	13
42	r.massmov: an open-source landslide model for dynamic early warning systems. Natural Hazards, 2014, 70, 1153-1179.	3.4	10
43	A methodology for improving landslide PSI data analysis. International Journal of Remote Sensing, 2014, 35, 2186-2214.	2.9	159
44	Rainfall-Induced Landslides: Slope Stability Analysis Through Field Monitoring., 2014,, 273-279.		2
45	Geological Interpretation of PSInSAR Data at Regional Scale. Sensors, 2008, 8, 7469-7492.	3.8	134
46	Swelling-shrinking properties of weathered clayey soils associated with shallow landslides. Quarterly Journal of Engineering Geology and Hydrogeology, 2004, 37, 77-94.	1.4	21
47	Developing and testing a data-driven methodology for shallow landslide susceptibility assessment: preliminary results. Rendiconti Online Societa Geologica Italiana, 0, 35, 25-28.	0.3	7
48	The role of the vineyards on slope stability: a case study from an area susceptible to shallow landslides. Rendiconti Online Societa Geologica Italiana, 0, 39, 8-11.	0.3	1
49	Nonlinear regression technique to assess the landslide susceptibility of the Kalapahar hill, Guwahati, Assam State (India). Rendiconti Online Societa Geologica Italiana, 0, 41, 179-182.	0.3	0
50	Evaluation of anthropogenic effects on the sediment delivery dynamics in response to slope instability. Rendiconti Online Societa Geologica Italiana, 0, 42, 5-9.	0.3	1