
Shaodong Xie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8939624/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Residential building materials: An important source of ambient formaldehyde in mainland China. Environment International, 2022, 158, 106909.	4.8	17
2	Enhanced summertime ozone and SOA from biogenic volatile organic compound (BVOC) emissions due to vegetation biomass variability during 1981–2018 in China. Atmospheric Chemistry and Physics, 2022, 22, 2351-2364.	1.9	41
3	Emission trends of industrial VOCs in China since the clean air action and future reduction perspectives. Science of the Total Environment, 2022, 826, 153994.	3.9	50
4	Observation-Based Estimations of Relative Ozone Impacts by Using Volatile Organic Compounds Reactivities. Environmental Science and Technology Letters, 2022, 9, 10-15.	3.9	10
5	Accurate identification of key VOCs sources contributing to O3 formation along the Liaodong Bay based on emission inventories and ambient observations. Science of the Total Environment, 2022, 844, 156998.	3.9	9
6	Historical volatile organic compounds emission performance and reduction potentials in China's petroleum refining industry. Journal of Cleaner Production, 2021, 292, 125810.	4.6	19
7	Source profiles, emission factors and associated contributions to secondary pollution of volatile organic compounds (VOCs) emitted from a local petroleum refinery in Shandong. Environmental Pollution, 2021, 274, 116589.	3.7	46
8	Secondary Formation of Aerosols Under Typical Highâ€Humidity Conditions in Wintertime Sichuan Basin, China: A Contrast to the North China Plain. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD034560.	1.2	8
9	Isoprenoid emissions from natural vegetation increased rapidly in eastern China. Environmental Research, 2021, 200, 111462.	3.7	7
10	Spatiotemporal variation of surface ozone and its causes in Beijing, China since 2014. Atmospheric Environment, 2021, 260, 118556.	1.9	23
11	Research on accounting and detection of volatile organic compounds from a typical petroleum refinery in Hebei, North China. Chemosphere, 2021, 281, 130653.	4.2	17
12	Quantification of primary and secondary sources to PM2.5 using an improved source regional apportionment method in an industrial city, China. Science of the Total Environment, 2020, 706, 135715.	3.9	23
13	Chemical characteristics and health risks of trace metals in PM2.5 from firework/firecracker burning during the Spring Festival in North China. IOP Conference Series: Earth and Environmental Science, 2020, 489, 012002.	0.2	1
14	Spatiotemporal patterns of PM2.5 elemental composition over China and associated health risks. Environmental Pollution, 2020, 265, 114910.	3.7	31
15	Temporal and spatial distribution characteristics and source origins of volatile organic compounds in a megacity of Sichuan Basin, China. Environmental Research, 2020, 185, 109478.	3.7	34
16	Speciated NMVOCs Emission Inventories from Industrial Sources in China and Spatial Patterns of Ozone Formation Potential in 2016. IOP Conference Series: Earth and Environmental Science, 2020, 489, 012004.	0.2	0
17	Understanding the sources and spatiotemporal characteristics of VOCs in the Chengdu Plain, China, through measurement and emission inventory. Science of the Total Environment, 2020, 714, 136692.	3.9	53
18	Estimations and uncertainty of biogenic volatile organic compound emission inventory in China for 2008–2018. Science of the Total Environment, 2020, 733, 139301.	3.9	35

SHAODONG XIE

#	Article	IF	CITATIONS
19	Scattered coal is the largest source of ambient volatile organic compounds during the heating season in Beijing. Atmospheric Chemistry and Physics, 2020, 20, 9351-9369.	1.9	31
20	Characteristics of volatile organic compounds, NO2, and effects on ozone formation at a site with high ozone level in Chengdu. Journal of Environmental Sciences, 2019, 75, 334-345.	3.2	62
21	Characteristics and sources of carbonaceous aerosol across urban and rural sites in a rapidly urbanized but low-level industrialized city in the Sichuan Basin, China. Environmental Science and Pollution Research, 2019, 26, 26646-26663.	2.7	13
22	Characteristics of six criteria air pollutants before, during, and after a severe air pollution episode caused by biomass burning in the southern Sichuan Basin, China. Atmospheric Environment, 2019, 215, 116840.	1.9	28
23	Verification of anthropogenic VOC emission inventory through ambient measurements and satellite retrievals. Atmospheric Chemistry and Physics, 2019, 19, 5905-5921.	1.9	54
24	Establishment of county-level emission inventory for industrial NMVOCs in China and spatial-temporal characteristics for 2010–2016. Atmospheric Environment, 2019, 211, 194-203.	1.9	56
25	Daytime atmospheric oxidation capacity in four Chinese megacities during the photochemically polluted season: a case study based on box model simulation. Atmospheric Chemistry and Physics, 2019, 19, 3493-3513.	1.9	145
26	Exploring the characteristics and sources of carbonaceous aerosols in the agro-pastoral transitional zone of Northern China. Environmental Pollution, 2019, 249, 589-597.	3.7	6
27	Spatial-temporal variations and reduction potentials of volatile organic compound emissions from the coking industry in China. Journal of Cleaner Production, 2019, 214, 224-235.	4.6	47
28	Seasonal variations of transport pathways and potential sources of PM2.5 in Chengdu, China (2012–2013). Frontiers of Environmental Science and Engineering, 2018, 12, 1.	3.3	17
29	Optimal redistribution of an urban air quality monitoring network using atmospheric dispersion model and genetic algorithm. Atmospheric Environment, 2018, 177, 222-233.	1.9	42
30	Exploring ozone pollution in Chengdu, southwestern China: A case study from radical chemistry to O3-VOC-NOx sensitivity. Science of the Total Environment, 2018, 636, 775-786.	3.9	230
31	Spatiotemporal variations of ambient volatile organic compounds and their sources in Chongqing, a mountainous megacity in China. Science of the Total Environment, 2018, 627, 1442-1452.	3.9	109
32	Exploration of the formation mechanism and source attribution of ambient ozone in Chongqing with an observation-based model. Science China Earth Sciences, 2018, 61, 23-32.	2.3	30
33	Spatial Distribution of Secondary Organic Aerosol Formation Potential in China Derived from Speciated Anthropogenic Volatile Organic Compound Emissions. Environmental Science & Technology, 2018, 52, 8146-8156.	4.6	104
34	Characteristics of trace elements in PM2.5 and PM10 of Chifeng, northeast China: Insights into spatiotemporal variations and sources. Atmospheric Research, 2018, 213, 550-561.	1.8	66
35	Spatial Distribution of Ozone Formation in China Derived from Emissions of Speciated Volatile Organic Compounds. Environmental Science & Technology, 2017, 51, 2574-2583.	4.6	249
36	Characteristics and source distribution of air pollution in winter in Qingdao, eastern China. Environmental Pollution, 2017, 224, 44-53.	3.7	55

SHAODONG XIE

#	Article	IF	CITATIONS
37	Bibliometric analysis: global research trends in biogenic volatile organic compounds during 1991–2014. Environmental Earth Sciences, 2017, 76, 1.	1.3	9
38	Screening the emission sources of volatile organic compounds (VOCs) in China by multi-effects evaluation. Frontiers of Environmental Science and Engineering, 2016, 10, 1.	3.3	48
39	Estimating emissions from crop residue open burning in China based on statistics and MODIS fire products. Journal of Environmental Sciences, 2016, 44, 158-170.	3.2	68
40	Characterization of submicron aerosols influenced by biomass burning at a site in the Sichuan Basin, southwestern China. Atmospheric Chemistry and Physics, 2016, 16, 13213-13230.	1.9	46
41	High-resolution historical emission inventories of crop residue burning in fields in China for the period 1990–2013. Atmospheric Environment, 2016, 138, 152-161.	1.9	66
42	Effects of rigorous emission controls on reducing ambient volatile organic compounds in Beijing, China. Science of the Total Environment, 2016, 557-558, 531-541.	3.9	74
43	Evolution process and sources of ambient volatile organic compounds during a severe haze event in Beijing, China. Science of the Total Environment, 2016, 560-561, 62-72.	3.9	96
44	Spatial distribution and source analysis of SO2 concentration in Urumqi. International Journal of Hydrogen Energy, 2016, 41, 15899-15908.	3.8	10
45	Method to establish the emission inventory of anthropogenic volatile organic compounds in China and its application in the period 2008–2012. Atmospheric Environment, 2016, 127, 244-254.	1.9	129
46	Characteristics of volatile organic compounds and their role in ground-level ozone formation in the Beijing-Tianjin-Hebei region, China. Atmospheric Environment, 2015, 113, 247-254.	1.9	116
47	Characteristics and origins of carbonaceous aerosol in the Sichuan Basin, China. Atmospheric Environment, 2014, 94, 215-223.	1.9	70
48	Biomass burning contribution to ambient volatile organic compounds (VOCs) in the Chengdu–Chongqing Region (CCR), China. Atmospheric Environment, 2014, 99, 403-410.	1.9	73
49	Spatiotemporal pattern and regional characteristics of visibility in China during 1976–2010. Science Bulletin, 2014, 59, 3054-3065.	1.7	12
50	Spatial distribution of black carbon emissions in China. Science Bulletin, 2013, 58, 3830-3839.	1.7	24
51	Temporal and spatial variation in recent vehicular emission inventories in China based on dynamic emission factors. Journal of the Air and Waste Management Association, 2013, 63, 310-326.	0.9	33
52	Temporal and spatial visibility trends in the Sichuan Basin, China, 1973 to 2010. Atmospheric Research, 2012, 112, 25-34.	1.8	79
53	Analysis of the transport pathways and potential sources of PM10 in Shanghai based on three methods. Science of the Total Environment, 2012, 414, 525-534.	3.9	90
54	Choice of control of sulfur and/or nitrogen deposition based on critical loads. Science Bulletin, 2010, 55, 493-498.	1.7	5

SHAODONG XIE

#	Article	IF	CITATIONS
55	A bibliometric analysis of world volatile organic compounds research trends. Scientometrics, 2010, 83, 477-492.	1.6	136
56	Ozone source attribution during a severe photochemical smog episode in Beijing, China. Science in China Series B: Chemistry, 2009, 52, 1270-1280.	0.8	64
57	Assessment of world aerosol research trends by bibliometric analysis. Scientometrics, 2008, 77, 113-130.	1.6	170
58	Quantitative structure–property relationships for octanol–water partition coefficients of polybrominated diphenyl ethers. Chemosphere, 2008, 72, 1602-1606.	4.2	62
59	QSPR-based prediction of gas/particle partitioning of polychlorinated biphenyls in the atmosphere. Chemosphere, 2007, 66, 1807-1820.	4.2	12
60	Source Apportionment of Ambient Volatile Organic Compounds in Beijing. Environmental Science & Technology, 2007, 41, 4348-4353.	4.6	273
61	Source apportionment of PM2.5 in Beijing in 2004. Journal of Hazardous Materials, 2007, 146, 124-130.	6.5	143
62	Estimation of vehicular emission inventories in China from 1980 to 2005. Atmospheric Environment, 2007, 41, 8963-8979.	1.9	193
63	Source apportionment of PM2.5 in Beijing by positive matrix factorization. Atmospheric Environment, 2006, 40, 1526-1537.	1.9	321
64	Characteristics of PM10, SO2, NOx and O3 in ambient air during the dust storm period in Beijing. Science of the Total Environment, 2005, 345, 153-164.	3.9	92
65	Characteristics of air pollution in Beijing during sand-dust storm periods. Water, Air and Soil Pollution, 2005, 5, 217-229.	0.8	14
66	Investigation of the effects of acid rain on the deterioration of cement concrete using accelerated tests established in laboratory. Atmospheric Environment, 2004, 38, 4457-4466.	1.9	121
67	Calculation and Mapping of Critical Loads for S, N and Acidity in China. Water, Air, and Soil Pollution, 2001, 130, 1199-1204.	1.1	33