List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8939561/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multiple myeloma cells depend on the DDI2/NRF1-mediated proteasome stress response for survival. Blood Advances, 2022, 6, 429-440.	2.5	16
2	Cell-free DNA for the detection of emerging treatment failure in relapsed/ refractory multiple myeloma. Leukemia, 2022, 36, 1078-1087.	3.3	13
3	Sustained minimal residual disease in myeloma. Blood, 2022, 139, 469-471.	0.6	1
4	Myocardial Composition in Light-Chain Cardiac Amyloidosis More Than 1 Year After Successful Therapy. JACC: Cardiovascular Imaging, 2022, 15, 594-603.	2.3	6
5	Laboratory-Based Rationale for Targeting the Protein Homeostasis Network in AL Amyloidosis. Hemato, 2022, 3, 298-317.	0.2	0
6	Risk factors for the development of orthostatic hypotension during autologous stem cell transplant in patients with multiple myeloma. Leukemia and Lymphoma, 2022, 63, 2403-2412.	0.6	2
7	A phase II study of daratumumab with weekly carfilzomib, pomalidomide, and dexamethasone in relapsed and refractory multiple myeloma Journal of Clinical Oncology, 2022, 40, 8012-8012.	0.8	2
8	Myeloma developing regimens using genomics (MyDRUG) trial: Results from the RAS mutation targeting arm Journal of Clinical Oncology, 2022, 40, 8055-8055.	0.8	3
9	Mass spectrometry for the evaluation of monoclonal proteins in multiple myeloma and related disorders: an International Myeloma Working Group Mass Spectrometry Committee Report. Blood Cancer Journal, 2021, 11, 24.	2.8	77
10	Successful treatment of solitary bone plasmacytoma and bone remineralisation with novel biological agents leading to new bone formation – a case series. British Journal of Haematology, 2021, 193, e36-e38.	1.2	1
11	ROBO1 Promotes Homing, Dissemination, and Survival of Multiple Myeloma within the Bone Marrow Microenvironment. Blood Cancer Discovery, 2021, 2, 338-353.	2.6	8
12	Bortezomib Induces Anti–Multiple Myeloma Immune Response Mediated by cGAS/STING Pathway Activation. Blood Cancer Discovery, 2021, 2, 468-483.	2.6	64
13	Final results of a phase 1b study of isatuximab short-duration fixed-volume infusion combination therapy for relapsed/refractory multiple myeloma. Leukemia, 2021, 35, 3526-3533.	3.3	13
14	ERK signaling mediates resistance to immunomodulatory drugs in the bone marrow microenvironment. Science Advances, 2021, 7, .	4.7	11
15	Specific targeting of the KRAS mutational landscape in myeloma as a tool to unveil the elicited antitumor activity. Blood, 2021, 138, 1705-1720.	0.6	10
16	Abstract LB110: Multiple myeloma cells depend on the NRF1-DDI2 proteasome stress response pathway for survival. , 2021, , .		0
17	AL Amyloidosis: Current Chemotherapy and Immune Therapy Treatment Strategies. JACC: CardioOncology, 2021, 3, 467-487.	1.7	31
18	Targeting Free Light Chain Secretion Via Botulinum Neurotoxin Is a Novel Therapeutic Strategy in AL Amyloidosis By Inducing a Terminal Unfolded Protein Response. Blood, 2021, 138, 1576-1576.	0.6	1

#	Article	IF	CITATIONS
19	Mutations in the Alternative Complement Pathway in Multiple Myeloma Patients with Carfilzomib-Induced Thrombotic Microangiopathy. Blood, 2021, 138, 2708-2708.	0.6	2
20	Overcoming drug resistance by targeting protein homeostasis in multiple myeloma. , 2021, 4, 1028-1046.		7
21	Targeting histone deacetylase 3 (HDAC3) in the bone marrow microenvironment inhibits multiple myeloma proliferation by modulating exosomes and IL-6 trans-signaling. Leukemia, 2020, 34, 196-209.	3.3	48
22	Quantitative [18F]florbetapir PET/CT may identify lung involvement in patients with systemic AL amyloidosis. European Journal of Nuclear Medicine and Molecular Imaging, 2020, 47, 1998-2009.	3.3	14
23	Systemic Amyloidosis Due to Clonal Plasma Cell Diseases. Hematology/Oncology Clinics of North America, 2020, 34, 1009-1026.	0.9	9
24	Changing paradigms in diagnosis and treatment of monoclonal gammopathy of undetermined significance (MGUS) and smoldering multiple myeloma (SMM). Leukemia, 2020, 34, 3111-3125.	3.3	39
25	Exosomes in the Pathogenesis and Treatment of Multiple Myeloma in the Context of the Bone Marrow Microenvironment. Frontiers in Oncology, 2020, 10, 608815.	1.3	23
26	YWHAE/14-3-3ε expression impacts the protein load, contributing to proteasome inhibitor sensitivity in multiple myeloma. Blood, 2020, 136, 468-479.	0.6	8
27	Role of the Bone Marrow Milieu in Multiple Myeloma Progression and Therapeutic Resistance. Clinical Lymphoma, Myeloma and Leukemia, 2020, 20, e752-e768.	0.2	28
28	Proteomics-inspired precision medicine for treating and understanding multiple myeloma. Expert Review of Precision Medicine and Drug Development, 2020, 5, 67-85.	0.4	7
29	Improved Quantification of CardiacÂAmyloid Burden in SystemicÂLight ChainÂAmyloidosis. JACC: Cardiovascular Imaging, 2020, 13, 1325-1336.	2.3	41
30	Bortezomib Induces Anti-Multiple Myeloma Immune Response Mediated By Cgas/Sting Pathway Activation, Type I Interferon Secretion, and Immunogenic Cell Death: Clinical Application. Blood, 2020, 136, 7-8.	0.6	4
31	Towards a better understanding of monoclonal gammopathy of renal significance. British Journal of Haematology, 2019, 186, 653-654.	1.2	0
32	Early Detection of Multiorgan Light-Chain Amyloidosis by Whole-Body ¹⁸ F-Florbetapir PET/CT. Journal of Nuclear Medicine, 2019, 60, 1234-1239.	2.8	54
33	Contribution of Inhibition of Protein Catabolism in Myeloma. Cancer Journal (Sudbury, Mass), 2019, 25, 11-18.	1.0	8
34	Targeting Proteotoxic Stress in Cancer: A Review of the Role that Protein Quality Control Pathways Play in Oncogenesis. Cancers, 2019, 11, 66.	1.7	73
35	A Phase II Study of Elotuzumab in Combination with Pomalidomide, Bortezomib, and Dexamethasone in Relapsed and Refractory Multiple Myeloma. Blood, 2019, 134, 3169-3169.	0.6	6
36	Targeting Myeloma Cell Metabolism Via Disruption of the Lnc-17-92 Transcriptional Program: Druggable New Vulnerability in Multiple Myeloma. Blood, 2019, 134, 317-317.	0.6	4

#	Article	IF	CITATIONS
37	The Transmembrane Receptor Roundabout 1 (ROBO1) Is Necessary for Multiple Myeloma Proliferation and Homing to the Bone Marrow Niche. Blood, 2019, 134, 507-507.	0.6	0
38	Heavy Chain Disease of the Small Bowel. Current Gastroenterology Reports, 2018, 20, 3.	1.1	13
39	Genomic discovery and clonal tracking in multiple myeloma by cell-free DNA sequencing. Leukemia, 2018, 32, 1838-1841.	3.3	42
40	Overcoming multiple myeloma drug resistance in the era of cancer â€~omics'. Leukemia and Lymphoma, 2018, 59, 542-561.	0.6	34
41	Functional Role of Linc-RNAs in Multiple Myeloma: Linc-MIR17HG Affects Fatty Acid Biosynthesis Via transcriptional Regulation of ACC1 with Potential Therapeutic Implications. Blood, 2018, 132, 1925-1925.	0.6	0
42	A Phase II Study of the Efficacy and Safety of Lenalidomide, Subcutaneous Bortezomib and Dexamethasone (RVD) Combination Therapy for Patients with Newly Diagnosed Multiple Myeloma: Promising Activity and Manageable Toxicity, Including in High Risk Disease. Blood, 2018, 132, 1981-1981.	0.6	1
43	Pathogenesis beyond the cancer clone(s) in multiple myeloma. Blood, 2015, 125, 3049-3058.	0.6	228
44	Promising therapies in multiple myeloma. Blood, 2015, 126, 300-310.	0.6	86
45	Lenalidomide Enhances Immune Checkpoint Blockade-Induced Immune Response in Multiple Myeloma. Clinical Cancer Research, 2015, 21, 4607-4618.	3.2	271
46	Best Treatment Strategies in High-Risk Multiple Myeloma: Navigating a Gray Area. Journal of Clinical Oncology, 2014, 32, 2125-2132.	0.8	22
47	Understanding biology to tackle the disease: Multiple myeloma from bench to bedside, and back. Ca-A Cancer Journal for Clinicians, 2014, 64, 422-444.	157.7	85
48	Team Work Matters: Dual Inhibition Puts Non-Hodgkin Lymphoma Under Siege. Clinical Cancer Research, 2014, 20, 5863-5865.	3.2	1
49	Biological and Clinical Implications of Clonal Heterogeneity and Clonal Evolution in Multiple Myeloma. Current Cancer Therapy Reviews, 2014, 10, 70-79.	0.2	34
50	Targeting Immune Suppressive Microenvironment By Immune Checkpoint Blockade in Multiple Myeloma. Blood, 2014, 124, 27-27.	0.6	2
51	Molecular mechanisms of effectiveness of novel therapies in multiple myeloma. Leukemia and Lymphoma, 2013, 54, 229-241.	0.6	17
52	Candidate genes of Waldenström's macroglobulinemia: current evidence and research. The Application of Clinical Genetics, 2013, 6, 33.	1.4	6
53	Pivotal Advance: Protein synthesis modulates responsiveness of differentiating and malignant plasma cells to proteasome inhibitors. Journal of Leukocyte Biology, 2012, 92, 921-931.	1.5	67
54	Does My Patient with a Serum Monoclonal Spike have Multiple Myeloma?. Hematology/Oncology Clinics of North America, 2012, 26, 383-393.	0.9	8

#	Article	IF	CITATIONS
55	Impact of optimal follow-up of monoclonal gammopathy of undetermined significance on early diagnosis and prevention of myeloma-related complications. Blood, 2010, 116, 2019-2025.	0.6	59
56	Investigational Agent MLN2238/MLN9708, a Specific, Orally Available, Small Molecule Proteasome Inhibitor, Shows Promising In Vitro Activity Against Multiple Myeloma Cell Lines. Blood, 2010, 116, 3014-3014.	0.6	1
57	The proteasome load versus capacity balance determines apoptotic sensitivity of multiple myeloma cells to proteasome inhibition. Blood, 2009, 113, 3040-3049.	0.6	220
58	Immunomodulatory EFFECTS of Lenalidomide and Pomalidomide ON INTERACTION of TUMOR and BONE MARROW Accessory CELLS IN MULTIPLE MYELOMA Blood, 2009, 114, 950-950.	0.6	0
59	A NOVEL Aurora A Kinase INHIBITOR MLN8237 Induces Cytotoxicity and CELL Cycle Arrest IN MULTIPLE MYELOMA Blood, 2009, 114, 3830-3830.	0.6	0
60	Proteasome Stress Causes Apoptotic Sensitivity of Multiple Myeloma Cells to Proteasome Inhibition. Blood, 2008, 112, 247-247.	0.6	2
61	Combination of a Novel Proteasome Inhibitor NPI-0052 and Lenalidomide Trigger in Vivo Synergistic Cytotoxicity in Multiple Myeloma. Blood, 2008, 112, 3662-3662.	0.6	3
62	Plasmacytoid Dendritic Cells Induce Growth and Survival of Multiple Myeloma Cells: Therapeutic Application Blood, 2007, 110, 3507-3507.	0.6	12
63	Progressively impaired proteasomal capacity during terminal plasma cell differentiation. EMBO Journal, 2006, 25, 1104-1113.	3.5	139