List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8939227/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                 | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Optimal Plot Dimensions for Performance Testing of Hybrid Potato in the Field. Potato Research, 2022, 65, 417-434.                                                                                      | 1.2 | 10        |
| 2  | A two-stage approach for the spatio-temporal analysis of high-throughput phenotyping data.<br>Scientific Reports, 2022, 12, 3177.                                                                       | 1.6 | 10        |
| 3  | psBLUP: incorporating marker proximity for improving genomic prediction accuracy. Euphytica, 2022, 218, 1.                                                                                              | 0.6 | Ο         |
| 4  | Little heterosis found in diploid hybrid potato: The genetic underpinnings of a new hybrid crop. G3:<br>Genes, Genomes, Genetics, 2022, 12, .                                                           | 0.8 | 7         |
| 5  | Identification of environment types and adaptation zones with self-organizing maps; applications to sunflower multi-environment data in Europe. Theoretical and Applied Genetics, 2022, 135, 2059-2082. | 1.8 | 8         |
| 6  | Physiological adaptive traits are a potential allele reservoir for maize genetic progress under challenging conditions. Nature Communications, 2022, 13, .                                              | 5.8 | 19        |
| 7  | Yield dissection models to improve yield: a case study in tomato. In Silico Plants, 2021, 3, .                                                                                                          | 0.8 | 6         |
| 8  | Common bean SNP alleles and candidate genes affecting photosynthesis under contrasting water regimes. Horticulture Research, 2021, 8, 4.                                                                | 2.9 | 13        |
| 9  | Intercontinental prediction of soybean phenology via hybrid ensemble of knowledge-based and data-driven models. In Silico Plants, 2021, 3, .                                                            | 0.8 | 14        |
| 10 | A diversity of resistance sources to Fusarium oxysporum f. sp. pisi found within grass pea germplasm.<br>Plant and Soil, 2021, 463, 19-38.                                                              | 1.8 | 12        |
| 11 | The influence of QTL allelic diversity on QTL detection in multi-parent populations: a simulation study<br>in sugar beet. BMC Genomic Data, 2021, 22, 4.                                                | 0.7 | 7         |
| 12 | An analysis of simulated yield data for pepper shows how genotype × environment interaction in yield can be understood in terms of yield components and their QTLs. Crop Science, 2021, 61, 1826-1842.  | 0.8 | 5         |
| 13 | Improving Genomic Prediction Using High-Dimensional Secondary Phenotypes. Frontiers in Genetics, 2021, 12, 667358.                                                                                      | 1.1 | 3         |
| 14 | Genotype-specific P-spline response surfaces assist interpretation of regional wheat adaptation to climate change. In Silico Plants, 2021, 3, .                                                         | 0.8 | 8         |
| 15 | Understanding the Effectiveness of Genomic Prediction in Tetraploid Potato. Frontiers in Plant<br>Science, 2021, 12, 672417.                                                                            | 1.7 | 18        |
| 16 | An IBD-based mixed model approach for QTL mapping in multiparental populations. Theoretical and Applied Genetics, 2021, 134, 3643-3660.                                                                 | 1.8 | 9         |
| 17 | Grass pea natural variation reveals oligogenic resistance to <i>Fusarium oxysporum</i> f. sp.<br><i>pisi</i> . Plant Genome, 2021, 14, e20154.                                                          | 1.6 | 5         |
| 18 | Phenomics data processing: A plot-level model for repeated measurements to extract the timing of key stages and quantities at defined time points. Field Crops Research, 2021, 274, 108314.             | 2.3 | 18        |

| #  | Article                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Lessons from a GWAS study of a wheat pre-breeding program: pyramiding resistance alleles to<br>Fusarium crown rot. Theoretical and Applied Genetics, 2021, 134, 897-908.                                                              | 1.8 | 9         |
| 20 | Training Set Construction for Genomic Prediction in Auto-Tetraploids: An Example in Potato.<br>Frontiers in Plant Science, 2021, 12, 771075.                                                                                          | 1.7 | 0         |
| 21 | Natural Variation in Portuguese Common Bean Germplasm Reveals New Sources of Resistance Against<br><i>Fusarium oxysporum</i> f. sp. <i>phaseoli</i> and Resistance-Associated Candidate Genes.<br>Phytopathology, 2020, 110, 633-647. | 1.1 | 28        |
| 22 | Dietary Intakes of Vegetable Protein, Folate,and Vitamins B-6 and B-12 Are Partially Correlated with<br>Physical Functioning of Dutch Older Adults Using Copula Graphical Models. Journal of Nutrition,<br>2020, 150, 634-643.        | 1.3 | 24        |
| 23 | Imputation of 3 million SNPs in the Arabidopsis regional mapping population. Plant Journal, 2020, 102, 872-882.                                                                                                                       | 2.8 | 34        |
| 24 | Multi-environment analysis of sorghum breeding trials using additive and dominance genomic relationships. Theoretical and Applied Genetics, 2020, 133, 1009-1018.                                                                     | 1.8 | 13        |
| 25 | QTL detection in a pedigreed breeding population of diploid potato. Euphytica, 2020, 216, 1.                                                                                                                                          | 0.6 | 10        |
| 26 | The genetic and functional analysis of flavor in commercial tomato: the <i>FLORAL4</i> gene underlies a QTL for floral aroma volatiles in tomato fruit. Plant Journal, 2020, 103, 1189-1204.                                          | 2.8 | 35        |
| 27 | Genomic prediction for broad and specific adaptation in sorghum accommodating differential variances of SNP effects. Crop Science, 2020, 60, 2328-2342.                                                                               | 0.8 | 3         |
| 28 | Multi-parent multi-environment QTL analysis: an illustration with the EU-NAM Flint population.<br>Theoretical and Applied Genetics, 2020, 133, 2627-2638.                                                                             | 1.8 | 10        |
| 29 | Volatilome–Genome-Wide Association Study on Wholemeal Maize Flour. Journal of Agricultural and<br>Food Chemistry, 2020, 68, 7809-7818.                                                                                                | 2.4 | 6         |
| 30 | Alleles to Enhance Antioxidant Content in Maize—A Genome-Wide Association Approach. Journal of<br>Agricultural and Food Chemistry, 2020, 68, 4051-4061.                                                                               | 2.4 | 7         |
| 31 | Semantic concept schema of the linear mixed model of experimental observations. Scientific Data, 2020, 7, 70.                                                                                                                         | 2.4 | 8         |
| 32 | Reciprocal cybrids reveal how organellar genomes affect plant phenotypes. Nature Plants, 2020, 6,<br>13-21.                                                                                                                           | 4.7 | 40        |
| 33 | CGIAR modeling approaches for resourceâ€constrained scenarios: I. Accelerating crop breeding for a changing climate. Crop Science, 2020, 60, 547-567.                                                                                 | 0.8 | 45        |
| 34 | Reconstruction of Networks with Direct and Indirect Genetic Effects. Genetics, 2020, 214, 781-807.                                                                                                                                    | 1.2 | 6         |
| 35 | Special issue in honour of Prof. Reto J. StrasserÂ-ÂPhenotyping with fast fluorescence sensors approximates yield component measurements in pepper (Capsicum annuum L.). Photosynthetica, 2020, 58, 622-637.                          | 0.9 | 1         |
| 36 | Modelling strategies for assessing and increasing the effectiveness of new phenotyping techniques in plant breeding. Plant Science, 2019, 282, 23-39.                                                                                 | 1.7 | 173       |

| #  | Article                                                                                                                                                                                                            | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Genomic Prediction of Grain Yield and Drought-Adaptation Capacity in Sorghum Is Enhanced by<br>Multi-Trait Analysis. Frontiers in Plant Science, 2019, 10, 997.                                                    | 1.7 | 48        |
| 38 | A model-based approach to analyse genetic variation in potato using standard cultivars and a<br>segregating population. II. Tuber bulking and resource use efficiency. Field Crops Research, 2019, 242,<br>107582. | 2.3 | 6         |
| 39 | A model-based approach to analyse genetic variation in potato using standard cultivars and a segregating population. I. Canopy cover dynamics. Field Crops Research, 2019, 242, 107581.                            | 2.3 | 7         |
| 40 | Using crop growth model stress covariates and AMMI decomposition to better predict genotype-by-environment interactions. Theoretical and Applied Genetics, 2019, 132, 3399-3411.                                   | 1.8 | 38        |
| 41 | Imputation to whole-genome sequence using multiple pig populations and its use in genome-wide association studies. Genetics Selection Evolution, 2019, 51, 2.                                                      | 1.2 | 54        |
| 42 | Exome sequences and multiâ€environment field trials elucidate the genetic basis of adaptation in barley.<br>Plant Journal, 2019, 99, 1172-1191.                                                                    | 2.8 | 50        |
| 43 | Significance testing and genomic inflation factor using highâ€density genotypes or wholeâ€genome<br>sequence data. Journal of Animal Breeding and Genetics, 2019, 136, 418-429.                                    | 0.8 | 33        |
| 44 | Construction of Genetic Linkage Maps in Multiparental Populations. Genetics, 2019, 212, 1031-1044.                                                                                                                 | 1.2 | 11        |
| 45 | Genomic prediction of maize yield across European environmental conditions. Nature Genetics, 2019,<br>51, 952-956.                                                                                                 | 9.4 | 157       |
| 46 | Combining pedigree and genomic information to improve prediction quality: an example in sorghum.<br>Theoretical and Applied Genetics, 2019, 132, 2055-2067.                                                        | 1.8 | 30        |
| 47 | Tracing the ancestry of modern bread wheats. Nature Genetics, 2019, 51, 905-911.                                                                                                                                   | 9.4 | 230       |
| 48 | Genotype by Environment Interaction and Adaptation. , 2019, , 29-71.                                                                                                                                               |     | 5         |
| 49 | Genome-wide association study for kernel composition and flour pasting behavior in wholemeal maize flour. BMC Plant Biology, 2019, 19, 123.                                                                        | 1.6 | 19        |
| 50 | Combining Crop Growth Modeling and Statistical Genetic Modeling to Evaluate Phenotyping Strategies. Frontiers in Plant Science, 2019, 10, 1491.                                                                    | 1.7 | 65        |
| 51 | From QTLs to Adaptation Landscapes: Using Genotype-To-Phenotype Models to Characterize G×E Over<br>Time. Frontiers in Plant Science, 2019, 10, 1540.                                                               | 1.7 | 33        |
| 52 | Correcting for spatial heterogeneity in plant breeding experiments with P-splines. Spatial Statistics, 2018, 23, 52-71.                                                                                            | 0.9 | 180       |
| 53 | Assessment of heterosis in two Arabidopsis thaliana common-reference mapping populations. PLoS ONE, 2018, 13, e0205564.                                                                                            | 1.1 | 8         |
| 54 | Recursive Algorithms for Modeling Genomic Ancestral Origins in a Fixed Pedigree. G3: Genes, Genomes, Genetics, 2018, 8, 3231-3245.                                                                                 | 0.8 | 8         |

| #  | Article                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Genes and gene clusters related to genotype and drought-induced variation in saccharification<br>potential, lignin content and wood anatomical traits in Populus nigraâ€. Tree Physiology, 2018, 38,<br>320-339.                | 1.4 | 35        |
| 56 | Accurate Genotype Imputation in Multiparental Populations from Low-Coverage Sequence. Genetics, 2018, 210, 71-82.                                                                                                               | 1.2 | 37        |
| 57 | Development of Genomic Prediction in Sorghum. Crop Science, 2018, 58, 690-700.                                                                                                                                                  | 0.8 | 31        |
| 58 | Genotype by Environment Interaction and Adaptation. , 2018, , 1-44.                                                                                                                                                             |     | 10        |
| 59 | Validation of accelerometer for measuring physical activity in free-living individuals. Baltic Journal of Health and Physical Activity, 2018, 10, 7-21.                                                                         | 0.2 | 2         |
| 60 | Modelling spatial trends in sorghum breeding field trials using a two-dimensional P-spline mixed model. Theoretical and Applied Genetics, 2017, 130, 1375-1392.                                                                 | 1.8 | 92        |
| 61 | The potential of probabilistic graphical models in linkage map construction. Theoretical and Applied Genetics, 2017, 130, 433-444.                                                                                              | 1.8 | 6         |
| 62 | Estimation of metabolite networks with regard to a specific covariable: applications to plant and human data. Metabolomics, 2017, 13, 129.                                                                                      | 1.4 | 9         |
| 63 | Natural variation of YELLOW SEEDLING1 affects photosynthetic acclimation of Arabidopsis thaliana.<br>Nature Communications, 2017, 8, 1421.                                                                                      | 5.8 | 35        |
| 64 | Evaluation of LD decay and various LD-decay estimators in simulated and SNP-array data of tetraploid potato. Theoretical and Applied Genetics, 2017, 130, 123-135.                                                              | 1.8 | 158       |
| 65 | How do the type of QTL effect and the form of the residual term influence QTL detection in<br>multi-parent populations? A case study in the maize EU-NAM population. Theoretical and Applied<br>Genetics, 2017, 130, 1753-1764. | 1.8 | 32        |
| 66 | Genetic architecture of plant stress resistance: multiâ€ŧrait genomeâ€wide association mapping. New<br>Phytologist, 2017, 213, 1346-1362.                                                                                       | 3.5 | 144       |
| 67 | Predicting Responses in Multiple Environments: Issues in Relation to Genotype × Environment<br>Interactions. Crop Science, 2016, 56, 2210-2222.                                                                                 | 0.8 | 91        |
| 68 | What Should Students in Plant Breeding Know About the Statistical Aspects of Genotype ×<br>Environment Interactions?. Crop Science, 2016, 56, 2119-2140.                                                                        | 0.8 | 175       |
| 69 | Genome-wide analysis of yield in Europe: allelic effects as functions of drought and heat scenarios.<br>Plant Physiology, 2016, 172, pp.00621.2016.                                                                             | 2.3 | 140       |
| 70 | Improvement of Predictive Ability by Uniform Coverage of the Target Genetic Space. G3: Genes,<br>Genomes, Genetics, 2016, 6, 3733-3747.                                                                                         | 0.8 | 32        |
| 71 | A method for sensitivity analysis to assess the effects of measurement error in multiple exposure variables using external validation data. BMC Medical Research Methodology, 2016, 16, 139.                                    | 1.4 | 5         |
| 72 | Evaluation of a twoâ€part regression calibration to adjust for dietary exposure measurement error in the Cox proportional hazards model: A simulation study. Biometrical Journal, 2016, 58, 766-782.                            | 0.6 | 9         |

| #  | Article                                                                                                                                                                                                            | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Improved batch correction in untargeted MS-based metabolomics. Metabolomics, 2016, 12, 88.                                                                                                                         | 1.4 | 167       |
| 74 | Back to Acid Soil Fields: The Citrate Transporter SbMATE Is a Major Asset for Sustainable Grain Yield for Sorghum Cultivated on Acid Soils. G3: Genes, Genomes, Genetics, 2016, 6, 475-484.                        | 0.8 | 29        |
| 75 | Modelling of Genotype by Environment Interaction and Prediction of Complex Traits across Multiple Environments as a Synthesis of Crop Growth Modelling, Genetics and Statistics. , 2016, , 55-82.                  |     | 51        |
| 76 | Parameter estimation in tree graph metabolic networks. PeerJ, 2016, 4, e2417.                                                                                                                                      | 0.9 | 0         |
| 77 | Automated estimation of leaf area development in sweet pepper plants from image analysis. Functional<br>Plant Biology, 2015, 42, 486.                                                                              | 1.1 | 4         |
| 78 | Marker-Based Estimation of Heritability in Immortal Populations. Genetics, 2015, 199, 379-398.                                                                                                                     | 1.2 | 192       |
| 79 | Root phenotyping: from component trait in the lab to breeding: Table 1 Journal of Experimental<br>Botany, 2015, 66, 5389-5401.                                                                                     | 2.4 | 163       |
| 80 | How to dissect complex traits and how to choose suitable mapping resources for system genetics?.<br>Physics of Life Reviews, 2015, 13, 186-189.                                                                    | 1.5 | 3         |
| 81 | Understanding the genetic basis of potato development using a multi-trait QTL analysis. Euphytica,<br>2015, 204, 229-241.                                                                                          | 0.6 | 7         |
| 82 | Genomic prediction using imputed whole-genome sequence data in Holstein Friesian cattle. Genetics<br>Selection Evolution, 2015, 47, 71.                                                                            | 1.2 | 104       |
| 83 | Reconstruction of Genome Ancestry Blocks in Multiparental Populations. Genetics, 2015, 200, 1073-1087.                                                                                                             | 1.2 | 59        |
| 84 | Genotype–phenotype modeling considering intermediate level of biological variation: a case study<br>involving sensory traits, metabolites and QTLs in ripe tomatoes. Molecular BioSystems, 2015, 11,<br>3101-3110. | 2.9 | 25        |
| 85 | A New Method to Infer Causal Phenotype Networks Using QTL and Phenotypic Information. PLoS ONE, 2014, 9, e103997.                                                                                                  | 1.1 | 35        |
| 86 | Genome-Wide Association Mapping for Kernel and Malting Quality Traits Using Historical European<br>Barley Records. PLoS ONE, 2014, 9, e110046.                                                                     | 1.1 | 51        |
| 87 | Use of Two-Part Regression Calibration Model to Correct for Measurement Error in Episodically<br>Consumed Foods in a Single-Replicate Study Design: EPIC Case Study. PLoS ONE, 2014, 9, e113160.                   | 1.1 | 15        |
| 88 | A Weighted AMMI Algorithm to Study Genotypeâ€byâ€Environment Interaction and QTLâ€byâ€Environment<br>Interaction. Crop Science, 2014, 54, 1555-1570.                                                               | 0.8 | 47        |
| 89 | Broccoli Cultivar Performance under Organic and Conventional Management Systems and<br>Implications for Crop Improvement. Crop Science, 2014, 54, 1539-1554.                                                       | 0.8 | 15        |
| 90 | A General Modeling Framework for Genome Ancestral Origins in Multiparental Populations. Genetics, 2014, 198, 87-101.                                                                                               | 1.2 | 14        |

| #   | Article                                                                                                                                                                          | IF         | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------|
| 91  | Accuracy of imputation to whole-genome sequence data in Holstein Friesian cattle. Genetics Selection Evolution, 2014, 46, 41.                                                    | 1.2        | 128       |
| 92  | Identification of agronomically important QTL in tetraploid potato cultivars using a marker–trait<br>association analysis. Theoretical and Applied Genetics, 2014, 127, 731-748. | 1.8        | 66        |
| 93  | Genetic diversity and linkage disequilibrium analysis in elite sugar beet breeding lines and wild beet accessions. Theoretical and Applied Genetics, 2014, 127, 559-571.         | 1.8        | 18        |
| 94  | Metabolomics reveals organ-specific metabolic rearrangements during early tomato seedling development. Metabolomics, 2014, 10, 958-974.                                          | 1.4        | 32        |
| 95  | Another Look at Bayesian Analysis of AMMI Models for Genotype-Environment Data. Journal of Agricultural, Biological, and Environmental Statistics, 2014, 19, 240.                | 0.7        | 21        |
| 96  | QTLs for barley yield adaptation to Mediterranean environments in the â€~Nure'Â×Ââ€~Tremois' biparen<br>population. Euphytica, 2014, 197, 73-86.                                 | tal<br>0.6 | 74        |
| 97  | Variation in Broccoli Cultivar Phytochemical Content under Organic and Conventional Management<br>Systems: Implications in Breeding for Nutrition. PLoS ONE, 2014, 9, e95683.    | 1.1        | 31        |
| 98  | Multi-trait and multi-environment QTL analyses of yield and a set of physiological traits in pepper.<br>Theoretical and Applied Genetics, 2013, 126, 2597-2625.                  | 1.8        | 48        |
| 99  | Genetic and QTL analyses of yield and a set of physiological traits in pepper. Euphytica, 2013, 190, 181-201.                                                                    | 0.6        | 25        |
| 100 | Quality of core collections for effective utilisation of genetic resources review, discussion and interpretation. Theoretical and Applied Genetics, 2013, 126, 289-305.          | 1.8        | 134       |
| 101 | Maximizing genetic differentiation in core collections by PCA-based clustering of molecular marker data. Theoretical and Applied Genetics, 2013, 126, 763-772.                   | 1.8        | 20        |
| 102 | The statistical analysis of multi-environment data: modeling genotype-by-environment interaction and its genetic basis. Frontiers in Physiology, 2013, 4, 44.                    | 1.3        | 349       |
| 103 | Improving Hierarchical Clustering of Genotypic Data via Principal Component Analysis. Crop Science, 2013, 53, 1546-1554.                                                         | 0.8        | 22        |
| 104 | Determinants of barley grain yield in drought-prone Mediterranean environments. Italian Journal of<br>Agronomy, 2013, 8, 1.                                                      | 0.4        | 17        |
| 105 | Natural Variation for Seed Longevity and Seed Dormancy Are Negatively Correlated in Arabidopsis  Â.<br>Plant Physiology, 2012, 160, 2083-2092.                                   | 2.3        | 114       |
| 106 | SPICY: towards automated phenotyping of large pepper plants in the greenhouse. Functional Plant<br>Biology, 2012, 39, 870.                                                       | 1.1        | 86        |
| 107 | Review and simulation of homoplasy and collision in AFLP. Euphytica, 2012, 183, 389-400.                                                                                         | 0.6        | 2         |
| 108 | Penalized regression techniques for modeling relationships between metabolites and tomato taste attributes. Euphytica, 2012, 183, 379-387.                                       | 0.6        | 9         |

| #   | Article                                                                                                                                                                                                                          | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Dynamics of senescence-related QTLs in potato. Euphytica, 2012, 183, 289-302.                                                                                                                                                    | 0.6 | 28        |
| 110 | XIVth meeting of the Eucarpia Section â€~Biometrics in Plant Breeding'. Euphytica, 2012, 183, 275-276.                                                                                                                           | 0.6 | 0         |
| 111 | New Figures of Merit for Comprehensive Functional Genomics Data: The Metabolomics Case.<br>Analytical Chemistry, 2011, 83, 3267-3274.                                                                                            | 3.2 | 22        |
| 112 | On the increase of predictive performance with high-level data fusion. Analytica Chimica Acta, 2011, 705, 41-47.                                                                                                                 | 2.6 | 59        |
| 113 | Determinants of barley grain yield in a wide range of Mediterranean environments. Field Crops<br>Research, 2011, 120, 169-178.                                                                                                   | 2.3 | 73        |
| 114 | A comparison of population types used for QTL mapping in <i>Arabidopsis thaliana</i> . Plant Genetic Resources: Characterisation and Utilisation, 2011, 9, 185-188.                                                              | 0.4 | 17        |
| 115 | Gene and QTL detection in a three-way barley cross under selection by a mixed model with kinship information using SNPs. Theoretical and Applied Genetics, 2011, 122, 1605-1616.                                                 | 1.8 | 53        |
| 116 | Phenotypic Analyses of Multi-Environment Data for Two Diverse Tetraploid Potato Collections:<br>Comparing an Academic Panel with an Industrial Panel. Potato Research, 2011, 54, 157-181.                                        | 1.2 | 14        |
| 117 | Analysis of natural allelic variation in <i>Arabidopsis</i> using a multiparent recombinant inbred line<br>population. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108,<br>4488-4493. | 3.3 | 137       |
| 118 | Mixed model approaches for the identification of QTLs within a maize hybrid breeding program.<br>Theoretical and Applied Genetics, 2010, 120, 429-440.                                                                           | 1.8 | 31        |
| 119 | Codominant scoring of AFLP in association panels. Theoretical and Applied Genetics, 2010, 121, 337-351.                                                                                                                          | 1.8 | 15        |
| 120 | Population structure and linkage disequilibrium unravelled in tetraploid potato. Theoretical and<br>Applied Genetics, 2010, 121, 1151-1170.                                                                                      | 1.8 | 107       |
| 121 | Statistical epistasis between candidate gene alleles for complex tuber traits in an association mapping population of tetraploid potato. Theoretical and Applied Genetics, 2010, 121, 1303-1310.                                 | 1.8 | 46        |
| 122 | Detection and use of QTL for complex traits in multiple environments. Current Opinion in Plant<br>Biology, 2010, 13, 193-205.                                                                                                    | 3.5 | 146       |
| 123 | Gene Regulatory Networks from Multifactorial Perturbations Using Graphical Lasso: Application to the DREAM4 Challenge. PLoS ONE, 2010, 5, e14147.                                                                                | 1.1 | 54        |
| 124 | Natural variation for seed dormancy in Arabidopsis is regulated by additive genetic and molecular<br>pathways. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107,<br>4264-4269.         | 3.3 | 194       |
| 125 | Genetic control of pre-heading phases and other traits related to development in a double-haploid<br>barley (Hordeum vulgare L.) population. Field Crops Research, 2010, 119, 36-47.                                             | 2.3 | 51        |
| 126 | Modeling QTL for complex traits: detection and context for plant breeding. Current Opinion in Plant<br>Biology, 2009, 12, 231-240.                                                                                               | 3.5 | 153       |

| #   | Article                                                                                                                                                                                                                       | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Constraint-based probabilistic learning of metabolic pathways from tomato volatiles. Metabolomics, 2009, 5, 419-428.                                                                                                          | 1.4 | 16        |
| 128 | Homoplasy corrected estimation of genetic similarity from AFLP bands, and the effect of the number of bands on the precision of estimation. Theoretical and Applied Genetics, 2009, 119, 397-416.                             | 1.8 | 11        |
| 129 | Genetic variability in duration of pre-heading phases and relationships with leaf appearance and tillering dynamics in a barley population. Field Crops Research, 2009, 113, 95-104.                                          | 2.3 | 68        |
| 130 | The use of general and specific combining abilities in a context of gene expression relevant to plant breeding. Euphytica, 2008, 161, 115-122.                                                                                | 0.6 | 12        |
| 131 | Genetic research in a public–private research consortium: prospects for indirect use of Elite breeding<br>germplasm in academic research. Euphytica, 2008, 161, 293-300.                                                      | 0.6 | 8         |
| 132 | Association mapping of quality traits in potato (Solanum tuberosum L). Euphytica, 2008, 161, 47-60.                                                                                                                           | 0.6 | 98        |
| 133 | A multi-trait multi-environment QTL mixed model with an application to drought and nitrogen stress<br>trials in maize (Zea maysÂL.). Euphytica, 2008, 161, 241-257.                                                           | 0.6 | 134       |
| 134 | A mixed model QTL analysis for a complex cross population consisting of a half diallel of two-way hybrids in Arabidopsis thaliana: analysis of simulated data. Euphytica, 2008, 161, 107-114.                                 | 0.6 | 23        |
| 135 | A correlation network approach to metabolic data analysis for tomato fruits. Euphytica, 2008, 161, 181.                                                                                                                       | 0.6 | 79        |
| 136 | Natural DNA variation at candidate loci is associated with potato chip color, tuber starch content, yield and starch yield. Theoretical and Applied Genetics, 2008, 116, 1167-1181.                                           | 1.8 | 121       |
| 137 | Multi-environment QTL mixed models for drought stress adaptation in wheat. Theoretical and Applied Genetics, 2008, 117, 1077-1091.                                                                                            | 1.8 | 160       |
| 138 | Grain Yield Variation in Malting Barley Cultivars in Uruguay and Its Consequences for the Design of a<br>Trials Network. Crop Science, 2008, 48, 167-180.                                                                     | 0.8 | 11        |
| 139 | A Mixed-Model Quantitative Trait Loci (QTL) Analysis for Multiple-Environment Trial Data Using<br>Environmental Covariables for QTL-by-Environment Interactions, With an Example in Maize. Genetics,<br>2007, 177, 1801-1813. | 1.2 | 201       |
| 140 | Association mapping of leaf traits, flowering time, and phytate content in Brassica rapa. Genome, 2007, 50, 963-973.                                                                                                          | 0.9 | 89        |
| 141 | QTL-based analysis of genotype-by-environment interaction for grain yield of rice in stress and non-stress environments. Euphytica, 2007, 156, 213-226.                                                                       | 0.6 | 21        |
| 142 | Models for navigating biological complexity in breeding improved crop plants. Trends in Plant<br>Science, 2006, 11, 587-593.                                                                                                  | 4.3 | 364       |
| 143 | Mapping QTLs and QTLÂ×Âenvironment interaction for CIMMYT maize drought stress program using<br>factorial regression and partial least squares methods. Theoretical and Applied Genetics, 2006, 112,<br>1009-1023.            | 1.8 | 114       |
| 144 | Genome-wide screening for cis-regulatory variation using a classical diallel crossing scheme. Nucleic<br>Acids Research, 2006, 34, 3677-3686.                                                                                 | 6.5 | 20        |

| #   | Article                                                                                                                                                                              | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Calibration of Multivariate Scatter plots for Exploratory Analysis of Relations Within and Between<br>Sets of Variables in Genomic Research. Biometrical Journal, 2005, 47, 863-879. | 0.6 | 39        |
| 146 | QTL analysis and QTL-based prediction of flowering phenology in recombinant inbred lines of barley.<br>Journal of Experimental Botany, 2005, 56, 967-976.                            | 2.4 | 112       |
| 147 | Genetic Analysis of Variation in Gene Expression in Arabidopsis thaliana. Genetics, 2005, 171, 1267-1275.                                                                            | 1.2 | 116       |
| 148 | Statistical models for genotype by environment data: from conventional ANOVA models to eco-physiological QTL models. Australian Journal of Agricultural Research, 2005, 56, 883.     | 1.5 | 91        |
| 149 | Statistical aspects of essential derivation, with illustrations based on lettuce and barley. Euphytica, 2004, 137, 129-137.                                                          | 0.6 | 22        |
| 150 | The establishment of â€~essential derivation' among rose varieties, using AFLP. Theoretical and Applied Genetics, 2004, 109, 1718-1725.                                              | 1.8 | 37        |
| 151 | Linkage Disequilibrium Mapping of Yield and Yield Stability in Modern Spring Barley Cultivars.<br>Genetics, 2004, 168, 435-446.                                                      | 1.2 | 375       |
| 152 | Interpreting Treatment × Environment Interaction in Agronomy Trials. Agronomy Journal, 2001, 93,<br>949-960.                                                                         | 0.9 | 47        |
| 153 | Using Partial Least Squares Regression, Factorial Regression, and AMMI Models for Interpreting<br>Genotype × Environment Interaction. Crop Science, 1999, 39, 955-967.               | 0.8 | 120       |
| 154 | Modelling expectation and variance for genotype by environment data. Heredity, 1997, 79, 162-171.                                                                                    | 1.2 | 58        |
| 155 | Multiplicative Interaction in Generalized Linear Models. Biometrics, 1995, 51, 1017.                                                                                                 | 0.8 | 53        |
| 156 | Improvement of protoplast regeneration from a recalcitrant inbred line of Brassica oleracea: a morphogenic analysis. Plant Science, 1994, 98, 87-95.                                 | 1.7 | 3         |