Sergei S Sheiko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8939163/publications.pdf

Version: 2024-02-01

41258 29081 11,124 111 49 104 citations h-index g-index papers 113 113 113 8103 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Injectable bottlebrush hydrogels with tissue-mimetic mechanical properties. Science Advances, 2022, 8, eabm2469.	4.7	53
2	Brush Architecture and Network Elasticity: Path to the Design of Mechanically Diverse Elastomers. Macromolecules, 2022, 55, 2940-2951.	2.2	16
3	Chemistry and Properties of Cross-Linked All-Aromatic Hyperbranched Polyaryletherketones. Macromolecules, 2022, 55, 100-112.	2.2	5
4	Mechanically Diverse Gels with Equal Solvent Content. ACS Central Science, 2022, 8, 845-852.	5 . 3	10
5	Large Sequence-Defined Supramolecules Obtained by the DNA-Guided Assembly of Biohybrid Poly(phosphodiester)s. Macromolecules, 2021, 54, 3423-3429.	2.2	12
6	Injectable non-leaching tissue-mimetic bottlebrush elastomers as an advanced platform for reconstructive surgery. Nature Communications, 2021, 12, 3961.	5 . 8	32
7	Regulating Tissue-Mimetic Mechanical Properties of Bottlebrush Elastomers by Magnetic Field. ACS Applied Materials & Samp; Interfaces, 2021, 13, 38783-38791.	4.0	6
8	Investigating the Stress–Strain Behavior in Ring-Opening Metathesis Polymerization-Based Brush Elastomers. Macromolecules, 2021, 54, 8365-8371.	2.2	12
9	To Mimic Mechanical Properties of the Skin by Inducing Oriented Nanofiber Microstructures in Bottlebrush Cellulose- <i>graft</i> -diblock Copolymer Elastomers. ACS Applied Materials & Samp; Interfaces, 2021, 13, 3278-3286.	4.0	24
10	Tissueâ€Adaptive Materials with Independently Regulated Modulus and Transition Temperature. Advanced Materials, 2020, 32, e2005314.	11.1	27
11	Synthesis, Structure, Hydrodynamics and Thermoresponsiveness of Graft Copolymer with Aromatic Polyester Backbone at Poly(2-isopropyl-2-oxazoline) Side Chains. Polymers, 2020, 12, 2643.	2.0	7
12	Independently Tuning Elastomer Softness and Firmness by Incorporating Side Chain Mixtures into Bottlebrush Network Strands. Macromolecules, 2020, 53, 9306-9312.	2.2	15
13	Understanding the Synthesis of Linear–Bottlebrush–Linear Block Copolymers: Toward Plastomers with Well-Defined Mechanical Properties. Macromolecules, 2020, 53, 8324-8332.	2.2	19
14	A Thermodynamic Roadmap for the Grafting-through Polymerization of PDMS (sub) $11 < sub$ MA. ACS Macro Letters, 2020, 9, 1303-1309.	2.3	20
15	Microphase Segregation in the Melts of Bottlebrush Block Copolymers. Macromolecules, 2020, 53, 2582-2593.	2.2	32
16	Tissue-Mimetic Dielectric Actuators: Free-Standing, Stable, and Solvent-Free. ACS Applied Polymer Materials, 2020, 2, 1741-1745.	2.0	19
17	Orthogonal Cationic and Radical RAFT Polymerizations to Prepare Bottlebrush Polymers. Angewandte Chemie, 2020, 132, 7270-7275.	1.6	9
18	Orthogonal Cationic and Radical RAFT Polymerizations to Prepare Bottlebrush Polymers. Angewandte Chemie - International Edition, 2020, 59, 7203-7208.	7.2	40

#	Article	IF	CITATIONS
19	Bottlebrush Bridge between Soft Gels and Firm Tissues. ACS Central Science, 2020, 6, 413-419.	5.3	56
20	Poor Solvents Improve Yield of Grafting-Through Radical Polymerization of OEO ₁₉ MA. ACS Macro Letters, 2020, 9, 674-679.	2.3	10
21	Theory of Microphase Segregation in the Melts of Copolymers with Dendritically Branched, Bottlebrush, or Cycled Blocks. ACS Macro Letters, 2019, 8, 1075-1079.	2.3	14
22	Nonlinear Elasticity and Swelling of Comb and Bottlebrush Networks. Macromolecules, 2019, 52, 5095-5101.	2.2	29
23	Degradable celluloseâ€based polymer brushes with controlled grafting densities. Journal of Polymer Science Part A, 2019, 57, 2426-2435.	2.5	16
24	Architectural Code for Rubber Elasticity: From Supersoft to Superfirm Materials. Macromolecules, 2019, 52, 7531-7546.	2.2	137
25	Thermo-sensitive polymers in medicine: A review. European Polymer Journal, 2019, 117, 402-423.	2.6	206
26	Comb and Bottlebrush Graft Copolymers in a Melt. Macromolecules, 2019, 52, 3942-3950.	2.2	41
27	Strained Bottlebrushes in Super-Soft Physical Networks. ACS Macro Letters, 2019, 8, 530-534.	2.3	32
28	Solution and Melts of Barbwire Bottlebrushes: Hierarchical Structure and Scale-Dependent Elasticity. Macromolecules, 2019, 52, 1671-1684.	2.2	28
29	Molecular Bottlebrushes as Novel Materials. Biomacromolecules, 2019, 20, 27-54.	2.6	230
30	Supersoft and Hyperelastic Polymer Networks with Brushlike Strands. Macromolecules, 2018, 51, 638-645.	2.2	64
31	Chameleon-like elastomers with molecularly encoded strain-adaptive stiffening and coloration. Science, 2018, 359, 1509-1513.	6.0	345
32	Drug Combination Synergy in Worm-like Polymeric Micelles Improves Treatment Outcome for Small Cell and Non-Small Cell Lung Cancer. ACS Nano, 2018, 12, 2426-2439.	7.3	132
33	Universality of the Entanglement Plateau Modulus of Comb and Bottlebrush Polymer Melts. Macromolecules, 2018, 51, 10028-10039.	2.2	61
34	Computationally Driven Design of Soft Materials with Tissue-like Mechanical Properties. ACS Symposium Series, 2018, , 33-50.	0.5	1
35	How To Measure Work of Adhesion and Surface Tension of Soft Polymeric Materials. Macromolecules, 2018, 51, 4059-4067.	2.2	21
36	Universal Coatings Based on Zwitterionic–Dopamine Copolymer Microgels. ACS Applied Materials & Logical Representation (2018), 10, 20869-20875.	4.0	49

#	Article	IF	CITATIONS
37	Encoding tissue mechanics in silicone. Science Robotics, 2018, 3, .	9.9	12
38	Benefits of Catalyzed Radical Termination: High-Yield Synthesis of Polyacrylate Molecular Bottlebrushes without Gelation. Macromolecules, 2018, 51, 6218-6225.	2.2	24
39	Coolingâ€Triggered Shapeshifting Hydrogels with Multiâ€Shape Memory Performance. Advanced Materials, 2018, 30, e1707461.	11.1	51
40	Dynamics of Dual Networks: Strain Rate and Temperature Effects in Hydrogels with Reversible H-Bonds. Macromolecules, 2017, 50, 652-659.	2.2	66
41	Bottlebrush-Guided Polymer Crystallization Resulting in Supersoft and Reversibly Moldable Physical Networks. Macromolecules, 2017, 50, 2103-2111.	2.2	38
42	Combs and Bottlebrushes in a Melt. Macromolecules, 2017, 50, 3430-3437.	2.2	117
43	High-Temperature Shape Memory Behavior of Novel All-Aromatic (AB)n-Multiblock Copoly(ester) Tj ETQq1 1 0.78-	4314 rgBT 2.2	/Oyerlock 1
44	From Adhesion to Wetting: Contact Mechanics at the Surfaces of Super-Soft Brush-Like Elastomers. ACS Macro Letters, 2017, 6, 854-858.	2.3	24
45	Bottlebrush Elastomers: A New Platform for Freestanding Electroactuation. Advanced Materials, 2017, 29, 1604209.	11.1	150
46	Mimicking biological stress–strain behaviour with synthetic elastomers. Nature, 2017, 549, 497-501.	13.7	286
47	Reversible shapeâ€shifting in polymeric materials. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 1365-1380.	2.4	100
48	Preparation of titania nanoparticles with tunable anisotropy and branched structures from core–shell molecular bottlebrushes. Polymer, 2016, 98, 481-486.	1.8	32
49	Dynamics of Bottlebrush Networks. Macromolecules, 2016, 49, 8009-8017.	2.2	36
50	Well-Defined Zwitterionic Microgels: Synthesis and Application as Acid-Resistant Microreactors. Macromolecules, 2016, 49, 7204-7210.	2.2	28
51	Preparation of ZnO hybrid nanoparticles by ATRP. Polymer, 2016, 107, 492-502.	1.8	30
52	Molecular structure of bottlebrush polymers in melts. Science Advances, 2016, 2, e1601478.	4.7	198
53	Programming temporal shapeshifting. Nature Communications, 2016, 7, 12919.	5.8	72
54	The design of wrinkled microcapsules for enhancement of release rate. Journal of Colloid and Interface Science, 2016, 478, 296-302.	5.0	25

#	Article	IF	CITATIONS
55	Advancing Reversible Shape Memory by Tuning the Polymer Network Architecture. Macromolecules, 2016, 49, 1383-1391.	2.2	55
56	Solvent-free, supersoft and superelastic bottlebrush melts and networks. Nature Materials, 2016, 15, 183-189.	13.3	428
57	Weak Hydrogen Bonding Enables Hard, Strong, Tough, and Elastic Hydrogels. Advanced Materials, 2015, 27, 6899-6905.	11.1	434
58	Isothermal programming of triple shape memory. Polymer, 2015, 72, 464-470.	1.8	11
59	Computer Simulations of Bottle Brushes: From Melts to Soft Networks. Macromolecules, 2015, 48, 5006-5015.	2.2	80
60	Molecular Bottlebrushes with Bimodal Length Distribution of Side Chains. Macromolecules, 2015, 48, 4813-4822.	2.2	31
61	Dynamic Optical Gratings Accessed by Reversible Shape Memory. ACS Applied Materials & Samp; Interfaces, 2015, 7, 14288-14293.	4.0	48
62	Grafting Poly(OEGMA) Brushes from a Shape Memory Elastomer and Subsequent Wrinkling Behavior. Langmuir, 2015, 31, 5489-5494.	1.6	8
63	Molecular Mechanochemistry: Engineering and Implications of Inherently Strained Architectures. Topics in Current Chemistry, 2015, 369, 1-36.	4.0	14
64	Exploring Quality in Gradient Copolymers. Macromolecular Rapid Communications, 2014, 35, 133-140.	2.0	29
65	Synthesis and Arm Dissociation in Molecular Stars with a Spoked Wheel Core and Bottlebrush Arms. Journal of the American Chemical Society, 2014, 136, 12762-12770.	6.6	39
66	Shifting Electronic Structure by Inherent Tension in Molecular Bottlebrushes with Polythiophene Backbones. ACS Macro Letters, 2014, 3, 738-742.	2.3	16
67	Shapeshifting: Reversible Shape Memory in Semicrystalline Elastomers. Macromolecules, 2014, 47, 1768-1776.	2.2	171
68	Poly[N-(2-hydroxypropyl)methacrylamide] nanogels by RAFT polymerization in inverse emulsion. Polymer Chemistry, 2014, 5, 1711-1719.	1.9	30
69	Molecular Tensile Machines: Anti-Arrhenius Cleavage of Disulfide Bonds. Macromolecules, 2013, 46, 7196-7201.	2.2	48
70	Orthogonal Self-Assembly in Folding Block Copolymers. Journal of the American Chemical Society, 2013, 135, 501-510.	6.6	184
71	How Far Can We Push Polymer Architectures?. Journal of the American Chemical Society, 2013, 135, 11421-11424.	6.6	89
72	Perfect mixing of immiscible macromolecules at fluid interfaces. Nature Materials, 2013, 12, 735-740.	13.3	60

#	Article	IF	Citations
73	Anti-Arrhenius cleavage of covalent bonds in bottlebrush macromolecules on substrate. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 9276-9280.	3.3	45
74	Synthesis and Characterization of Molecular Bottlebrushes Prepared by Iron-Based ATRP. Macromolecules, 2012, 45, 9243-9249.	2.2	35
75	Synthesis of Amphiphilic Poly(<i>N</i> -vinylpyrrolidone)- <i>b</i> -poly(vinyl acetate) Molecular Bottlebrushes. ACS Macro Letters, 2012, 1, 227-231.	2.3	62
76	Molecular dynamics simulations of bottlebrush macromolecules in two dimensional polymeric melts under flow conditions. Soft Matter, 2011, 7, 2805.	1.2	3
77	Focusing bond tension in bottle-brush macromolecules during spreading. Journal of Materials Chemistry, 2011, 21, 8448.	6.7	28
78	Coreâ ⁻ 'Shell Molecular Bottlebrushes with Helical Polypeptide Backbone: Synthesis, Characterization, and Solution Conformations. Macromolecules, 2011, 44, 1491-1499.	2.2	91
79	Bond Tension in Tethered Macromolecules. Macromolecules, 2011, 44, 4520-4529.	2.2	46
80	Molecular Tensile Machines: Intrinsic Acceleration of Disulfide Reduction by Dithiothreitol. Journal of the American Chemical Society, 2011, 133, 17479-17484.	6.6	48
81	Stimuli-responsive molecular brushes. Progress in Polymer Science, 2010, 35, 24-44.	11.8	600
82	Crystallization of Molecular Brushes with Block Copolymer Side Chains. Macromolecules, 2009, 42, 9008-9017.	2.2	70
83	Tension Amplification in Molecular Brushes in Solutions and on Substrates. Journal of Physical Chemistry B, 2009, 113, 3750-3768.	1.2	96
84	Cylindrical molecular brushes: Synthesis, characterization, and properties. Progress in Polymer Science, 2008, 33, 759-785.	11.8	1,035
85	Hetero-Grafted Block Brushes with PCL and PBA Side Chains. Macromolecules, 2008, 41, 6073-6080.	2.2	87
86	"Fatal Adsorption―of Brushlike Macromolecules:  High Sensitivity of Câ^'C Bond Cleavage Rates to Substrate Surface Energy. Journal of the American Chemical Society, 2008, 130, 4228-4229.	6.6	58
87	Effect of the Soluble Block Size on Spherical Diblock Copolymer Micelles. Macromolecules, 2008, 41, 6555-6563.	2.2	58
88	High Yield Synthesis of Molecular Brushes via ATRP in Miniemulsion. Macromolecules, 2007, 40, 6557-6563.	2.2	78
89	Vaporâ€induced spreading dynamics of adsorbed linear and brushâ€like macromolecules as observed by environmental SFM: Polymer chain statistics and scaling exponents. Journal of Polymer Science, Part B: Polymer Physics, 2007, 45, 2368-2379.	2.4	21
90	Flow-Enhanced Epitaxial Ordering of Brush-Like Macromolecules on Graphite. Langmuir, 2006, 22, 1254-1259.	1.6	28

#	Article	IF	CITATIONS
91	Synthesis, Characterization, and AFM Studies of Dendronized Polyferrocenylsilanes. Macromolecules, 2006, 39, 7922-7930.	2.2	22
92	Adsorption-induced scission of carbon–carbon bonds. Nature, 2006, 440, 191-194.	13.7	341
93	Molecular Brushes with Spontaneous Gradient by Atom Transfer Radical Polymerization. Macromolecules, 2005, 38, 8264-8271.	2.2	86
94	Diblock Copolymer Micelles in a Dilute Solution. Macromolecules, 2005, 38, 5330-5351.	2.2	282
95	Real-Time Scanning Force Microscopy of Macromolecular Conformational Transitions. Macromolecular Rapid Communications, 2004, 25, 1703-1707.	2.0	45
96	How dense are cylindrical brushes grafted from a multifunctional macroinitiator?. Polymer, 2004, 45, 8173-8179.	1.8	140
97	Conformational Switching of Molecular Brushes in Response to the Energy of Interaction with the Substrateâ€. Journal of Physical Chemistry A, 2004, 108, 9682-9686.	1.1	59
98	Tadpole Conformation of Gradient Polymer Brushes. Macromolecules, 2004, 37, 4235-4240.	2.2	110
99	Multiarm Molecular Brushes:  Effect of the Number of Arms on the Molecular Weight Polydispersity and Surface Ordering. Langmuir, 2004, 20, 6005-6011.	1.6	69
100	Densely-Grafted and Double-Grafted PEO Brushes via ATRP. A Route to Soft Elastomers. Macromolecules, 2003, 36, 6746-6755.	2.2	322
101	Measuring Molecular Weight by Atomic Force Microscopy. Journal of the American Chemical Society, 2003, 125, 6725-6728.	6.6	110
102	Effect of Initiation Conditions on the Uniformity of Three-Arm Star Molecular Brushes. Macromolecules, 2003, 36, 1843-1849.	2.2	219
103	Synthesis and Visualization of Densely Grafted Molecular Brushes with Crystallizable Poly(octadecyl) Tj ETQq1 1	0.784314 2.2	rgBT/Overlo
104	Synthesis of Molecular Brushes with Gradient in Grafting Density by Atom Transfer Polymerization. Macromolecules, 2002, 35, 3387-3394.	2.2	183
105	Single Molecule Rodâ^'Globule Phase Transition for Brush Molecules at a Flat Interface. Macromolecules, 2001, 34, 8354-8360.	2.2	196
106	Visualization of MacromoleculesA First Step to Manipulation and Controlled Response. Chemical Reviews, 2001, 101, 4099-4124.	23.0	368
107	Synthesis of Molecular Brushes with Block Copolymer Side Chains Using Atom Transfer Radical Polymerization. Macromolecules, 2001, 34, 4375-4383.	2.2	400
108	Molecularly thin films of metallodendrimers. Journal of Physical Organic Chemistry, 1998, 11, 540-545.	0.9	16

SERGEI S SHEIKO

#	Article	IF	CITATIONS
109	The Synthesis of Densely Grafted Copolymers by Atom Transfer Radical Polymerization. Macromolecules, 1998, 31, 9413-9415.	2.2	531
110	Monomolecular Films of Arborescent Graft Polystyrenes. Macromolecules, 1997, 30, 2343-2349.	2.2	67
111	Theory of Y―and Comb‧haped Polymer Brushes: The Parabolic Potential Framework. Macromolecular Theory and Simulations, 0, , 2100037.	0.6	0