Martin Schlee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8938979/publications.pdf Version: 2024-02-01

117625 197818 8,856 49 34 49 h-index citations g-index papers 53 53 53 10775 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	5'-Triphosphate RNA Is the Ligand for RIG-I. Science, 2006, 314, 994-997.	12.6	2,094
2	Sequence-specific potent induction of IFN-α by short interfering RNA in plasmacytoid dendritic cells through TLR7. Nature Medicine, 2005, 11, 263-270.	30.7	1,153
3	Recognition of 5′ Triphosphate by RIG-I Helicase Requires Short Blunt Double-Stranded RNA as Contained in Panhandle of Negative-Strand Virus. Immunity, 2009, 31, 25-34.	14.3	660
4	Recognition of RNA virus by RIG-I results in activation of CARD9 and inflammasome signaling for interleukin 11² production. Nature Immunology, 2010, 11, 63-69.	14.5	477
5	Antiviral immunity via RIG-I-mediated recognition of RNA bearing 5′-diphosphates. Nature, 2014, 514, 372-375.	27.8	459
6	Discriminating self from non-self in nucleic acid sensing. Nature Reviews Immunology, 2016, 16, 566-580.	22.7	438
7	SiRNA delivery with exosome nanoparticles. Nature Biotechnology, 2011, 29, 325-326.	17.5	299
8	Structural and functional insights into 5′-ppp RNA pattern recognition by the innate immune receptor RIG-I. Nature Structural and Molecular Biology, 2010, 17, 781-787.	8.2	229
9	A Conserved Histidine in the RNA Sensor RIG-I Controls Immune Tolerance to N1-2′O-Methylated Self RNA. Immunity, 2015, 43, 41-51.	14.3	221
10	siRNA and isRNA: two edges of one sword. Molecular Therapy, 2006, 14, 463-470.	8.2	214
11	Exosomes as nucleic acid nanocarriers. Advanced Drug Delivery Reviews, 2013, 65, 331-335.	13.7	206
12	Sequence-specific activation of the DNA sensor cGAS by Y-form DNA structures as found in primary HIV-1 cDNA. Nature Immunology, 2015, 16, 1025-1033.	14.5	202
13	Active NF-κB signalling is a prerequisite for influenza virus infection. Journal of General Virology, 2004, 85, 2347-2356.	2.9	198
14	Master sensors of pathogenic RNA – RIG-I like receptors. Immunobiology, 2013, 218, 1322-1335.	1.9	192
15	Mammalian WDR12 is a novel member of the Pes1–Bop1 complex and is required for ribosome biogenesis and cell proliferation. Journal of Cell Biology, 2005, 170, 367-378.	5.2	166
16	RIG-I detects infection with live <i>Listeria</i> by sensing secreted bacterial nucleic acids. EMBO Journal, 2012, 31, 4153-4164.	7.8	153
17	Stringent doxycycline-dependent control of gene activities using an episomal one-vector system. Nucleic Acids Research, 2005, 33, e137-e137.	14.5	129
18	Accessing the therapeutic potential of immunostimulatory nucleic acids. Current Opinion in Immunology, 2008, 20, 389-395.	5.5	104

MARTIN SCHLEE

#	Article	IF	CITATIONS
19	Selection of Molecular Structure and Delivery of RNA Oligonucleotides to Activate TLR7 versus TLR8 and to Induce High Amounts of IL-12p70 in Primary Human Monocytes. Journal of Immunology, 2009, 182, 6824-6833.	0.8	90
20	The Chase for the RIG-I Ligandâ \in "Recent Advances. Molecular Therapy, 2010, 18, 1254-1262.	8.2	84
21	Immune Sensing of Synthetic, Bacterial, and Protozoan RNA by Toll-like Receptor 8 Requires Coordinated Processing by RNase T2 and RNase 2. Immunity, 2020, 52, 591-605.e6.	14.3	83
22	c-MYC activation impairs the NF-κB and the interferon response: Implications for the pathogenesis of Burkitt's lymphoma. International Journal of Cancer, 2007, 120, 1387-1395.	5.1	77
23	Targeting the Cytosolic Innate Immune Receptors RIG-I and MDA5 Effectively Counteracts Cancer Cell Heterogeneity in Glioblastoma. Stem Cells, 2013, 31, 1064-1074.	3.2	76
24	Approaching the RNA ligand for RIGâ€ŀ?. Immunological Reviews, 2009, 227, 66-74.	6.0	73
25	RIG-I Detects Triphosphorylated RNA of Listeria monocytogenes during Infection in Non-Immune Cells. PLoS ONE, 2013, 8, e62872.	2.5	68
26	Fibromodulin as a novel tumor-associated antigen (TAA) in chronic lymphocytic leukemia (CLL), which allows expansion of specific CD8+ autologous T lymphocytes. Blood, 2005, 105, 1566-1573.	1.4	67
27	Selective and direct activation of human neutrophils but not eosinophils by Toll-like receptor 8. Journal of Allergy and Clinical Immunology, 2009, 123, 1026-1033.	2.9	66
28	Latent Membrane Protein 1 Regulates STAT1 through NF-κB-Dependent Interferon Secretion in Epstein-Barr Virus-Immortalized B Cells. Journal of Virology, 2005, 79, 4936-4943.	3.4	53
29	SOCS1 and SOCS3 Target IRF7 Degradation To Suppress TLR7-Mediated Type I IFN Production of Human Plasmacytoid Dendritic Cells. Journal of Immunology, 2018, 200, 4024-4035.	0.8	53
30	c-Myc and Rel/NF-κB Are the Two Master Transcriptional Systems Activated in the Latency III Program of Epstein-Barr Virus-Immortalized B Cells. Journal of Virology, 2009, 83, 5014-5027.	3.4	52
31	A Human In Vitro Whole Blood Assay to Predict the Systemic Cytokine Response to Therapeutic Oligonucleotides Including siRNA. PLoS ONE, 2013, 8, e71057.	2.5	51
32	Identification of Epstein-Barr Virus (EBV) Nuclear Antigen 2 (EBNA2) Target Proteins by Proteome Analysis: Activation of EBNA2 in Conditionally Immortalized B Cells Reflects Early Events after Infection of Primary B Cells by EBV. Journal of Virology, 2004, 78, 3941-3952.	3.4	49
33	RIG-I activation induces the release of extracellular vesicles with antitumor activity. Oncolmmunology, 2016, 5, e1219827.	4.6	44
34	MDM2 is recognized as a tumor-associated antigen in chronic lymphocytic leukemia by CD8+ autologous T lymphocytes. Experimental Hematology, 2006, 34, 44-53.	0.4	35
35	Higher activation of TLR9 in plasmacytoid dendritic cells by microbial DNA compared with self-DNA based on CpG-specific recognition of phosphodiester DNA. Journal of Leukocyte Biology, 2009, 86, 663-670.	3.3	31
36	MAPK-pathway inhibition mediates inflammatory reprogramming and sensitizes tumors to targeted activation of innate immunity sensor RIG-I. Nature Communications, 2021, 12, 5505.	12.8	30

MARTIN SCHLEE

#	Article	IF	CITATIONS
37	RIG-I Resists Hypoxia-Induced Immunosuppression and Dedifferentiation. Cancer Immunology Research, 2017, 5, 455-467.	3.4	29
38	RIG-I Activation Protects and Rescues from Lethal Influenza Virus Infection and Bacterial Superinfection. Molecular Therapy, 2017, 25, 2093-2103.	8.2	26
39	Human TLR8 Senses RNA From Plasmodium falciparum-Infected Red Blood Cells Which Is Uniquely Required for the IFN-γ Response in NK Cells. Frontiers in Immunology, 2019, 10, 371.	4.8	26
40	câ€MYC Impairs Immunogenicity of Human B Cells. Advances in Cancer Research, 2007, 97, 167-188.	5.0	24
41	Monocyte-Mediated Inhibition of TLR9-Dependent IFN-α Induction in Plasmacytoid Dendritic Cells Questions Bacterial DNA as the Active Ingredient of Bacterial Lysates. Journal of Immunology, 2010, 185, 7367-7373.	0.8	19
42	Enzymatic Synthesis and Purification of a Defined RIG-I Ligand. Methods in Molecular Biology, 2014, 1169, 15-25.	0.9	16
43	RIG-I-induced innate antiviral immunity protects mice from lethal SARS-CoV-2 infection. Molecular Therapy - Nucleic Acids, 2022, 27, 1225-1234.	5.1	14
44	Delivery with polycations extends the immunostimulant Ribomunyl® into a potent antiviral Toll-like receptor 7/8 agonist. Antiviral Therapy, 2011, 16, 751-758.	1.0	5
45	Fibromodulin as a Novel Tumor-Associated Antigen (TAA) in Chronic Lymphocytic Leukemia (CLL) Which Allows Expansion of Specific CD8+ Autologous T Lymphocytes Blood, 2004, 104, 175-175.	1.4	5
46	G-rich DNA-induced stress response blocks type-I-IFN but not CXCL10 secretion in monocytes. Scientific Reports, 2016, 6, 38405.	3.3	4
47	The many faces of cGAS: how cGAS activation is controlled in the cytosol, the nucleus, and during mitosis. Signal Transduction and Targeted Therapy, 2021, 6, 260.	17.1	4
48	An epigenetic GPIÂanchor defect impairs TLR4 signaling in the B cell transdifferentiation model for primary human monocytes BLaER1. Scientific Reports, 2021, 11, 14983.	3.3	3
49	DPP9 holds all the CARD8s for inflammasome regulation. Immunity, 2021, 54, 1363-1365.	14.3	2