Tingting Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8938737/publications.pdf Version: 2024-02-01

TINCTING LIU

#	Article	IF	CITATIONS
1	Third- and Second-Harmonic Generation in All-Dielectric Nanostructures: A Mini Review. Frontiers in Nanotechnology, 2022, 4, .	2.4	12
2	Polarization-controlled dynamically switchable high-harmonic generation from all-dielectric metasurfaces governed by dual bound states in the continuum. Physical Review B, 2022, 105, .	1.1	65
3	Gain-assisted critical coupling for enhanced optical absorption in graphene. Nanotechnology, 2021, 32, 205202.	1.3	10
4	Engineering light absorption at critical coupling via bound states in the continuum. Journal of the Optical Society of America B: Optical Physics, 2021, 38, 1325.	0.9	17
5	Tailoring anisotropic absorption in a borophene-based structure via critical coupling. Optics Express, 2021, 29, 8941.	1.7	22
6	Acoustic analysis of gas compositions based on molecular relaxation features. Results in Physics, 2021, 25, 104304.	2.0	4
7	A versatile acoustic gas sensing method via extracting intrinsic molecular internal specific heat. Physics Letters, Section A: General, Atomic and Solid State Physics, 2021, 401, 127349.	0.9	3
8	Perfect absorption in free-standing GaAs nanocylinder arrays by degenerate critical coupling. Optical Materials, 2021, 121, 111558.	1.7	2
9	Tuning nonlinear second-harmonic generation in AlGaAs nanoantennas via chalcogenide phase-change material. Physical Review B, 2021, 104, .	1.1	14
10	Tunable anisotropic absorption in monolayer black phosphorus using critical coupling. Applied Physics Express, 2020, 13, 012010.	1.1	16
11	Tailoring the absorption bandwidth of graphene at critical coupling. Physical Review B, 2020, 102, .	1.1	85
12	Controlling light absorption of graphene at critical coupling through magnetic dipole quasi-bound states in the continuum resonance. Physical Review B, 2020, 102, .	1.1	135
13	Active metamaterials and metadevices: a review. Journal Physics D: Applied Physics, 2020, 53, 503002.	1.3	261
14	Active control of electromagnetically induced transparency analog in all-dielectric metamaterials loaded with graphene. Journal Physics D: Applied Physics, 2020, 53, 505105.	1.3	18
15	Strong interaction between graphene and localized hot spots in all-dielectric metasurfaces. Journal Physics D: Applied Physics, 2019, 52, 385102.	1.3	10
16	Decoupling Multiple Rotational Relaxations of Hydrogen to Detect Gas Mixtures. IEEE Access, 2019, 7, 115774-115782.	2.6	6
17	Tunable Anisotropic Absorption in Hyperbolic Metamaterials Based on Black Phosphorous/Dielectric Multilayer Structures. Journal of Lightwave Technology, 2019, 37, 3290-3297.	2.7	76
18	Actively tunable slow light in a terahertz hybrid metal-graphene metamaterial. Journal of Optics (United Kingdom), 2019, 21, 035101.	1.0	8

TINGTING LIU

#	Article	IF	CITATIONS
19	Symmetry-protected bound states in the continuum supported by all-dielectric metasurfaces. Physical Review A, 2019, 100, .	1.0	205
20	Tailoring slow light with a metal–graphene hybrid metasurface in the terahertz regime. Journal of the Optical Society of America B: Optical Physics, 2019, 36, E48.	0.9	15
21	Black phosphorus-based anisotropic absorption structure in the mid-infrared. Optics Express, 2019, 27, 27618.	1.7	48
22	Tunable light trapping and absorption enhancement with graphene-based complementary metasurfaces. Optical Materials Express, 2019, 9, 1469.	1.6	9
23	A simple measurement method of molecular relaxation in a gas by reconstructing acoustic velocity dispersion. Measurement Science and Technology, 2018, 29, 015109.	1.4	8
24	Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials. Carbon, 2018, 126, 271-278.	5.4	382
25	Independently tunable dual-spectral electromagnetically induced transparency in a terahertz metal–graphene metamaterial. Journal Physics D: Applied Physics, 2018, 51, 415105.	1.3	49
26	Active manipulation of electromagnetically induced transparency in a terahertz hybrid metamaterial. Optics Communications, 2018, 426, 629-634.	1.0	35
27	Dynamically tunable electromagnetically induced transparency in a terahertz hybrid metamaterial. Physica E: Low-Dimensional Systems and Nanostructures, 2018, 104, 229-232.	1.3	12
28	Decomposition of effective specific heat of molecular relaxation for gas detection in a mixture. Journal of the Acoustical Society of America, 2017, 141, 1844-1851.	0.5	9
29	Dynamically controllable plasmon induced transparency based on hybrid metal-graphene metamaterials. Scientific Reports, 2017, 7, 13917.	1.6	49
30	Capturing molecular multimode relaxation processes in excitable gases based on decomposition of acoustic relaxation spectra. Measurement Science and Technology, 2017, 28, 085008.	1.4	10
31	Active Control of Near-Field Coupling in a Terahertz Metal-Graphene Metamaterial. IEEE Photonics Technology Letters, 2017, 29, 1998-2001.	1.3	30
32	Predicting acoustic relaxation absorption in gas mixtures for extraction of composition relaxation contributions. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2017, 473, 20170496.	1.0	6
33	A Mathematica program for the calculation of five-body Moshinsky brackets. Computer Physics Communications, 2016, 203, 238-244.	3.0	2
34	Acoustic absorption spectral peak location for gas detection. Sensors and Actuators B: Chemical, 2014, 203, 1-8.	4.0	21