Guangxian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8938558/publications.pdf Version: 2024-02-01

CHANCYIAN

#	Article	IF	CITATIONS
1	Facile synthesis of an eco-friendly nitrogen–phosphorus ammonium salt to enhance the durability and flame retardancy of cotton. Journal of Materials Chemistry A, 2017, 5, 9970-9981.	10.3	125
2	A plant-based reactive ammonium phytate for use as a flame-retardant for cotton fabric. Carbohydrate Polymers, 2017, 175, 636-644.	10.2	123
3	Synthesis and evaluation of an efficient, durable, and environmentally friendly flame retardant for cotton. Cellulose, 2017, 24, 1159-1170.	4.9	70
4	A novel reactive phosphorous flame retardant for cotton fabrics with durable flame retardancy and high whiteness due to self-buffering. Cellulose, 2018, 25, 5479-5497.	4.9	57
5	An eco-friendly N P flame retardant for durable flame-retardant treatment of cotton fabric. International Journal of Biological Macromolecules, 2021, 187, 251-261.	7.5	54
6	A novel flame retardant with reactive ammonium phosphate groups and polymerizing ability for preparing durable flame retardant and stiff cotton fabric. Polymer Degradation and Stability, 2019, 164, 145-156.	5.8	50
7	Synthesis of three novel amino acids-based flame retardants with multiple reactive groups for cotton fabrics. Cellulose, 2019, 26, 7537-7552.	4.9	49
8	A reactive flame retardant ammonium salt of diethylenetriaminepenta(methylene-phosphonic acid) for enhancing flame retardancy of cotton fabrics. Cellulose, 2018, 25, 787-797.	4.9	43
9	Synthesis of a phosphorusË—nitrogen flame retardant endowing cotton with high whiteness and washability. Industrial Crops and Products, 2019, 141, 111738.	5.2	42
10	A concise water-solvent synthesis of highly effective, durable, and eco-friendly flame-retardant coating on cotton fabrics. Carbohydrate Polymers, 2018, 199, 256-265.	10.2	41
11	Aminolysis of polyethylene terephthalate fabric by a method involving the gradual concentration of dilute ethylenediamine. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 513, 146-152.	4.7	40
12	A novel reactive flame retardant for cotton fabric based on a thiourea-phosphoric acid polymer. Industrial Crops and Products, 2020, 154, 112625.	5.2	40
13	A novel high-molecular-weight flame retardant for cotton fabrics. Cellulose, 2020, 27, 3501-3515.	4.9	33
14	Highly efficient flame-retardant kraft paper. Journal of Materials Science, 2019, 54, 1884-1897.	3.7	32
15	Facile fabricate a bioinspired Janus membrane with heterogeneous wettability for unidirectional water transfer and controllable oil–water separation. Journal of Materials Science, 2018, 53, 14398-14411.	3.7	29
16	A novel durable flame retardant for cotton fabrics based on diethylenetriamine. Polymer Degradation and Stability, 2022, 195, 109796.	5.8	26
17	A novel high whiteness flame retardant for cotton. Polymer Degradation and Stability, 2019, 164, 157-166.	5.8	23
18	Facile preparation of super-hydrophilic poly(ethylene terephthalate) fabric using dilute sulfuric acid under microwave irradiation. Applied Surface Science, 2015, 349, 437-444.	6.1	19

Guangxian

#	Article	IF	CITATIONS
19	An efficient anti-flaming phosphorus-containing guanazole derivative for cotton fabric. Cellulose, 2019, 26, 2791-2804.	4.9	19
20	Efficient and durable cotton fabric surface modification via flame retardant treatment. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 648, 129005.	4.7	15
21	An efficient and durable DOPO/H3PO4-based flame retardant for cotton fabric. Cellulose, 2021, 28, 7421-7434.	4.9	13
22	Anti-ultraviolet and anti-static modification of polyethylene terephthalate fabrics with graphene nanoplatelets by a high-temperature and high-pressure inlaying method. Textile Reseach Journal, 2019, 89, 1488-1499.	2.2	12
23	Microwave-promoted synthesis of polyolesters for lubrication oil using a composite catalyst in a solvent-free procedure. Green Chemistry, 2011, 13, 178-184.	9.0	11
24	Preparation of superhydrophobic poly(ethylene terephthalate) fabric by high-temperature sucrose fatty ester inlaying and esterification. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 493, 59-65.	4.7	5
25	Preparing polyester/carbon multifunctional fabrics by phosphoric acid carbonization. Cellulose, 2019, 26, 8907-8917.	4.9	5
26	Durable grafting of silkworm pupa protein onto the surface of polyethylene terephthalate fibers. Materials Science and Engineering C, 2016, 69, 1290-1296.	7.3	3
27	The Analyses of High Infectivity Mechanism of SARS-CoV-2 and Its Variants. Covid, 2021, 1, 666-673.	1.5	2