List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8938519/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Compound Copper Chalcogenide Nanocrystals. Chemical Reviews, 2017, 117, 5865-6109.	23.0	670
2	Colloidal Synthesis of Wurtzite Cu ₂ ZnSnS ₄ Nanorods and Their Perpendicular Assembly. Journal of the American Chemical Society, 2012, 134, 2910-2913.	6.6	381
3	Electric-Field-Assisted Assembly of Perpendicularly Oriented Nanorod Superlattices. Nano Letters, 2006, 6, 1479-1482.	4.5	353
4	High-Performance Germanium Nanowire-Based Lithium-Ion Battery Anodes Extending over 1000 Cycles Through in Situ Formation of a Continuous Porous Network. Nano Letters, 2014, 14, 716-723.	4.5	317
5	Advances in the Application of Silicon and Germanium Nanowires for Highâ€Performance Lithiumâ€ion Batteries. Advanced Materials, 2016, 28, 5696-5704.	11.1	171
6	Bioâ€derived Carbon Nanofibres from Lignin as Highâ€Performance Liâ€Ion Anode Materials. ChemSusChem, 2019, 12, 4516-4521.	3.6	130
7	Preparation of ordered mesoporous ceria with enhanced thermal stability. Journal of Materials Chemistry, 2002, 12, 1207-1212.	6.7	124
8	Self-Assembly of Vertically Aligned Nanorod Supercrystals Using Highly Oriented Pyrolytic Graphite. Nano Letters, 2007, 7, 2480-2485.	4.5	110
9	Highly Efficient Oxygen Evolution Reaction Enabled by Phosphorus Doping of the Fe Electronic Structure in Iron–Nickel Selenide Nanosheets. Advanced Science, 2021, 8, e2101775.	5.6	109
10	Tailoring the Optical Properties of Silicon Nanowire Arrays through Strain. Nano Letters, 2002, 2, 811-816.	4.5	99
11	Compositionally Tunable Photoluminescence Emission in Cu ₂ ZnSn(S _{1â°'<i>x</i>} Se _{<i>x</i>}) ₄ Nanocrystals. Angewandte Chemie - International Edition, 2013, 52, 9120-9124.	7.2	98
12	Phase-transition-driven growth of compound semiconductor crystals from ordered metastable nanorods. Nature Communications, 2014, 5, 3133.	5.8	98
13	Spontaneous Room Temperature Elongation of CdS and Ag2S Nanorods via Oriented Attachment. Journal of the American Chemical Society, 2009, 131, 12250-12257.	6.6	90
14	Compact strain-sensitive flexible photonic crystals for sensors. Applied Physics Letters, 2005, 87, 101902.	1.5	88
15	Synthesis of Tin Catalyzed Silicon and Germanium Nanowires in a Solvent–Vapor System and Optimization of the Seed/Nanowire Interface for Dual Lithium Cycling. Chemistry of Materials, 2013, 25, 1816-1822.	3.2	88
16	Three Dimensional Architectures of Ultra-High Density Semiconducting Nanowires Deposited on Chip. Journal of the American Chemical Society, 2003, 125, 6284-6288.	6.6	86
17	Understanding the influence of electrolyte additives on the electrochemical performance and morphology evolution of silicon nanowire based lithium-ion battery anodes. Journal of Power Sources, 2017, 359, 601-610.	4.0	84
18	Synthesis and Characterization of Dimensionally Ordered Semiconductor Nanowires within Mesoporous Silica. Journal of the American Chemical Society, 2001, 123, 7010-7016.	6.6	83

#	Article	IF	CITATIONS
19	Nanowire Heterostructures Comprising Germanium Stems and Silicon Branches as High-Capacity Li-Ion Anodes with Tunable Rate Capability. ACS Nano, 2015, 9, 7456-7465.	7.3	80
20	Copper Sulfide (Cu <i>_x</i> S) Nanowireâ€inâ€Carbon Composites Formed from Direct Sulfurization of the Metalâ€Organic Framework HKUSTâ€1 and Their Use as Liâ€Ion Battery Cathodes. Advanced Functional Materials, 2018, 28, 1800587.	7.8	77
21	Axial Si–Ge Heterostructure Nanowires as Lithium-Ion Battery Anodes. Nano Letters, 2018, 18, 5569-5575.	4.5	77
22	Assembly of Culn _{1-<i>x</i>} Ga _{<i>x</i>} S ₂ Nanorods into Highly Ordered 2D and 3D Superstructures. ACS Nano, 2012, 6, 6977-6983.	7.3	76
23	Controlled semiconductor nanorodassembly from solution: influence of concentration, charge and solvent nature. Journal of Materials Chemistry, 2012, 22, 1562-1569.	6.7	76
24	Complete Colloidal Synthesis of Cu ₂ SnSe ₃ Nanocrystals with Crystal Phase and Shape Control. Journal of the American Chemical Society, 2014, 136, 7954-7960.	6.6	76
25	Colloidal Synthesis of Cu2SnSe3 Tetrapod Nanocrystals. Journal of the American Chemical Society, 2013, 135, 7835-7838.	6.6	74
26	Behavior of Germanium and Silicon Nanowire Anodes with Ionic Liquid Electrolytes. ACS Nano, 2017, 11, 5933-5943.	7.3	69
27	Highly Ordered Nanorod Assemblies Extending over Device Scale Areas and in Controlled Multilayers by Electrophoretic Deposition. Journal of Physical Chemistry B, 2013, 117, 1608-1615.	1.2	64
28	Direct Synthesis of Alloyed Si _{1–<i>x</i>} Ge _{<i>x</i>} Nanowires for Performance-Tunable Lithium Ion Battery Anodes. ACS Nano, 2017, 11, 10088-10096.	7.3	64
29	Control of Pore Morphology in Mesoporous Silicas Synthesized from Triblock Copolymer Templates. Langmuir, 2002, 18, 4996-5001.	1.6	62
30	Atomically Abrupt Silicon–Germanium Axial Heterostructure Nanowires Synthesized in a Solvent Vapor Growth System. Nano Letters, 2013, 13, 1675-1680.	4.5	61
31	A Copper Silicide Nanofoam Current Collector for Directly Grown Si Nanowire Networks and their Application as Lithiumâ€Ion Anodes. Advanced Functional Materials, 2020, 30, 2003278.	7.8	57
32	Alternative anodes for low temperature lithium-ion batteries. Journal of Materials Chemistry A, 2021, 9, 14172-14213.	5.2	55
33	Centimetre scale assembly of vertically aligned and close packed semiconductor nanorods from solution. Chemical Communications, 2009, , 6421.	2.2	54
34	High Density Germanium Nanowire Growth Directly from Copper Foil by Self-Induced Solid Seeding. Chemistry of Materials, 2011, 23, 4838-4843.	3.2	54
35	Systematic Study into the Synthesis and Shape Development in Colloidal Culn _{<i>x</i>} Ga _{1–<i>x</i>} S ₂ Nanocrystals. Chemistry of Materials, 2013, 25, 653-661.	3.2	53
36	Conductive films of ordered nanowire arrays. Journal of Materials Chemistry, 2004, 14, 585.	6.7	52

#	Article	IF	CITATIONS
37	Progress and perspectives on alloying-type anode materials for advanced potassium-ion batteries. Materials Today, 2021, 48, 241-269.	8.3	51
38	A Rapid, Solvent-Free Protocol for the Synthesis of Germanium Nanowire Lithium-Ion Anodes with a Long Cycle Life and High Rate Capability. ACS Applied Materials & Interfaces, 2014, 6, 18800-18807.	4.0	50
39	Directing semiconductor nanorod assembly into 1D or 2D supercrystals by altering the surface charge. Chemical Communications, 2010, 46, 7193.	2.2	49
40	Colloidal Cu2ZnSn(SSe)4 (CZTSSe) Nanocrystals: Shape and Crystal Phase Control to Form Dots, Arrows, Ellipsoids, and Rods. Chemistry of Materials, 2015, 27, 4742-4748.	3.2	49
41	Insight into the Role of Additives in Controlling Polymorphic Outcome: A CO ₂ -Antisolvent Crystallization Process of Carbamazepine. Crystal Growth and Design, 2017, 17, 4544-4553.	1.4	49
42	Dense Silicon Nanowire Networks Grown on a Stainlessâ€Steel Fiber Cloth: A Flexible and Robust Anode for Lithiumâ€Ion Batteries. Advanced Materials, 2021, 33, e2105917.	11.1	46
43	The formation of dimensionally ordered germanium nanowires within mesoporous silica. Chemical Physics Letters, 2001, 343, 1-6.	1.2	45
44	Pore Expansion in Mesoporous Silicas Using Supercritical Carbon Dioxide. Chemistry of Materials, 2004, 16, 424-427.	3.2	45
45	High Density Growth of Indium seeded Silicon Nanowires in the Vapor phase of a High Boiling Point Solvent. Chemistry of Materials, 2012, 24, 2204-2210.	3.2	45
46	Insight into the 3D Architecture and Quasicrystal Symmetry of Multilayer Nanorod Assemblies from Moiré Interference Patterns. ACS Nano, 2012, 6, 3339-3345.	7.3	45
47	Pd Clusters Supported on Amorphous, Low-Porosity Carbon Spheres for Hydrogen Production from Formic Acid. ACS Applied Materials & Interfaces, 2015, 7, 8719-8726.	4.0	41
48	Measurements of the lattice constant of ceria when doped with lanthana and praseodymia - the possibility of local defect ordering and the observation of extensive phase separation. Journal of Physics Condensed Matter, 2003, 15, L49-L58.	0.7	39
49	Gold tip formation on perpendicularly aligned semiconductor nanorod assemblies. Journal of Materials Chemistry, 2008, 18, 5218.	6.7	38
50	Size controlled gold tip growth onto II–VI nanorods. Journal of Materials Chemistry, 2010, 20, 7875.	6.7	38
51	Solution Synthesis and Assembly of Wurtzite-Derived Cu–In–Zn–S Nanorods with Tunable Composition and Band Gap. Chemistry of Materials, 2015, 27, 1517-1523.	3.2	38
52	A facile phosphine-free colloidal synthesis of Cu ₂ SnS ₃ and Cu ₂ ZnSnS ₄ nanorods with a controllable aspect ratio. Chemical Communications, 2015, 51, 13810-13813.	2.2	36
53	Block copolymer mediated stabilization of sub-5 nm superparamagnetic nickel nanoparticles in an aqueous medium. Nanotechnology, 2009, 20, 415603.	1.3	35
54	A facile spin-cast route for cation exchange of multilayer perpendicularly-aligned nanorod assemblies. Nanoscale, 2011, 3, 4580.	2.8	35

#	Article	IF	CITATIONS
55	Production and isolation of pharmaceutical drug nanoparticles. International Journal of Pharmaceutics, 2021, 603, 120708.	2.6	35
56	Solution phase synthesis of silicon and germanium nanowires. Journal of Materials Chemistry C, 2013, 1, 4996.	2.7	34
57	Complete study of the composition and shape evolution in the synthesis of Cu ₂ ZnSnS ₄ (CZTS) semiconductor nanocrystals. CrystEngComm, 2015, 17, 6914-6922.	1.3	34
58	From batch to continuous — New opportunities for supercritical CO2 technology in pharmaceutical manufacturing. European Journal of Pharmaceutical Sciences, 2019, 137, 104971.	1.9	34
59	Perpendicular growth of catalyst-free germanium nanowire arrays. Chemical Communications, 2011, 47, 3843.	2.2	33
60	Copper Silicide Nanowires as Hosts for Amorphous Si Deposition as a Route to Produce High Capacity Lithium-Ion Battery Anodes. Nano Letters, 2019, 19, 8829-8835.	4.5	32
61	Growth of Crystalline Copper Silicide Nanowires in High Yield within a High Boiling Point Solvent System. Chemistry of Materials, 2012, 24, 4319-4325.	3.2	31
62	Role of Defects and Growth Directions in the Formation of Periodically Twinned and Kinked Unseeded Germanium Nanowires. Crystal Growth and Design, 2011, 11, 3266-3272.	1.4	30
63	Recent advances in solid-state polymer electrolytes and innovative ionic liquids based polymer electrolyte systems. Current Opinion in Electrochemistry, 2020, 21, 188-191.	2.5	30
64	Core–Shell Tin Oxide, Indium Oxide, and Indium Tin Oxide Nanoparticles on Silicon with Tunable Dispersion: Electrochemical and Structural Characteristics as a Hybrid Li-Ion Battery Anode. ACS Applied Materials & Interfaces, 2013, 5, 8195-8202.	4.0	27
65	Solvent Vapor Growth of Axial Heterostructure Nanowires with Multiple Alternating Segments of Silicon and Germanium. Nano Letters, 2016, 16, 374-380.	4.5	27
66	Supercritical fluid preparation of copper nanotubes and nanowires using mesoporous templates. Journal of Physics Condensed Matter, 2003, 15, 8303-8314.	0.7	26
67	Controlling Polymorphism of Carbamazepine Nanoparticles in a Continuous Supercritical-CO ₂ -Assisted Spray Drying Process. Crystal Growth and Design, 2019, 19, 3755-3767.	1.4	26
68	Colloidal WSe ₂ nanocrystals as anodes for lithium-ion batteries. Nanoscale, 2020, 12, 22307-22316.	2.8	26
69	Synthesis and dimensional control of CsPbBr3 perovskite nanocrystals using phosphorous based ligands. Journal of Chemical Physics, 2020, 152, 174702.	1.2	26
70	Direct Growth of Si, Ge, and Si–Ge Heterostructure Nanowires Using Electroplated Zn: An Inexpensive Seeding Technique for Li″on Alloying Anodes. Small, 2021, 17, e2005443.	5.2	26
71	Aligned Copper Zinc Tin Sulfide Nanorods as Lithium-Ion Battery Anodes with High Specific Capacities. Journal of Physical Chemistry C, 2018, 122, 20090-20098.	1.5	25
72	Two-Dimensional SnSe Nanonetworks: Growth and Evaluation for Li-Ion Battery Applications. ACS Applied Energy Materials, 2020, 3, 6602-6610.	2.5	25

#	Article	IF	CITATIONS
73	Tunable Core–Shell Nanowire Active Material for High Capacity Li-Ion Battery Anodes Comprised of PECVD Deposited aSi on Directly Grown Ge Nanowires. ACS Applied Materials & Interfaces, 2019, 11, 19372-19380.	4.0	24
74	Direct visualization of phase-matched efficient second harmonic and broadband sum frequency generation in hybrid plasmonic nanostructures. Light: Science and Applications, 2020, 9, 180.	7.7	24
75	A multi-rate kinetic model for spontaneous oriented attachment of CdS nanorods. Physical Chemistry Chemical Physics, 2010, 12, 12430.	1.3	23
76	Colloidal synthesis of homogeneously alloyed CdSexS1â^'x nanorods with compositionally tunable photoluminescence. Chemical Communications, 2013, 49, 10293.	2.2	23
77	Occurrence of Polytypism in Compound Colloidal Metal Chalcogenide Nanocrystals, Opportunities, and Challenges. Journal of Physical Chemistry Letters, 2015, 6, 3141-3148.	2.1	23
78	Selective Phase Transformation of Wurtzite Cu2ZnSn(SSe)4 (CZTSSe) Nanocrystals into Zinc-Blende and Kesterite Phases by Solution and Solid State Transformations. Chemistry of Materials, 2016, 28, 5055-5062.	3.2	23
79	Enhancing the performance of germanium nanowire anodes for Li-ion batteries by direct growth on textured copper. Chemical Communications, 2019, 55, 7780-7783.	2.2	23
80	The Role of Texturing and Densification on Optical Transmittance of Hydroxyapatite Ceramics. Journal of the American Ceramic Society, 2010, 93, 3773-3777.	1.9	22
81	Assembling Ordered Nanorod Superstructures and Their Application as Microcavity Lasers. Scientific Reports, 2017, 7, 43884.	1.6	22
82	A Nanowire Nest Structure Comprising Copper Silicide and Silicon Nanowires for Lithiumâ€lon Battery Anodes with High Areal Loading. Small, 2021, 17, e2102333.	5.2	22
83	Assembly of binary, ternary and quaternary compound semiconductor nanorods: From local to device scale ordering influenced by surface charge. CrystEngComm, 2014, 16, 9446-9454.	1.3	21
84	Alloying Germanium Nanowire Anodes Dramatically Outperform Graphite Anodes in Full-Cell Chemistries over a Wide Temperature Range. ACS Applied Energy Materials, 2021, 4, 1793-1804.	2.5	21
85	Metal surface nucleated supercritical fluid–solid–solid growth of Si and Ge/SiOx core–shell nanowires. Journal of Materials Chemistry, 2010, 20, 135-144.	6.7	20
86	The evolution of pseudo-spherical silicon nanocrystals to tetrahedra, mediated by phosphonic acid surfactants. Nanotechnology, 2009, 20, 275605.	1.3	19
87	Size controlled growth of germanium nanorods and nanowires by solution pyrolysis directly on a substrate. Chemical Communications, 2012, 48, 5446.	2.2	19
88	Solution synthesis of lead seeded germanium nanowires and branched nanowire networks and their application as Li-ion battery anodes. Nanotechnology, 2017, 28, 255603.	1.3	19
89	Low temperature solution synthesis of silicon, germanium and Si–Ge axial heterostructures in nanorod and nanowire form. Chemical Communications, 2018, 54, 5728-5731.	2.2	19
90	Fabrication of Noble metal-semiconductor hybrid nanostructures using phase transfer. Nano Research, 2013, 6, 121-130.	5.8	18

#	Article	IF	CITATIONS
91	Epitaxial growth of visible to infra-red transparent conducting In ₂ O ₃ nanodot dispersions and reversible charge storage as a Li-ion battery anode. Nanotechnology, 2013, 24, 065401.	1.3	18
92	Electrophoretic Deposition of Tin Sulfide Nanocubes as Highâ€Performance Lithiumâ€lon Battery Anodes. ChemElectroChem, 2019, 6, 3049-3056.	1.7	18
93	Influence of Carbonate-Based Additives on the Electrochemical Performance of Si NW Anodes Cycled in an Ionic Liquid Electrolyte. Nano Letters, 2020, 20, 7011-7019.	4.5	18
94	Insights into Nucleation and Growth of Colloidal Quaternary Nanocrystals by Multimodal X-ray Analysis. ACS Nano, 2021, 15, 6439-6447.	7.3	18
95	Periodic Binary Si:Ti, Si:Al Mixed Macroporous Oxides with Ultrahigh Heteroatom Loading:  A Facile Solâ^'Gel Approach. Chemistry of Materials, 2005, 17, 1434-1440.	3.2	17
96	Water dispersible semiconductor nanorod assemblies via a facile phase transfer and their application as fluorescent biomarkers. Journal of Materials Chemistry, 2009, 19, 8974.	6.7	17
97	An ac susceptibility study in capped Ni/Ni(OH)2core–shell nanoassemblies: dual peak observations. Journal Physics D: Applied Physics, 2011, 44, 325004.	1.3	17
98	Metal chalcogenide semiconductor nanocrystals synthesized from ion-conducting seeds and their applications. Journal of Materials Chemistry C, 2020, 8, 13868-13895.	2.7	17
99	Closeâ€Packed Goldâ€Nanocrystal Assemblies Deposited with Complete Selectivity into Lithographic Trenches. Advanced Materials, 2008, 20, 4745-4750.	11.1	15
100	Generation and physicochemical characterization of posaconazole cocrystals using Gas Antisolvent (GAS) and Supercritical Solvent (CSS) methods. Journal of Supercritical Fluids, 2021, 170, 105134.	1.6	15
101	Colloidal synthesis of Cu ₂ SnSe ₃ nanocrystals with structure induced shape evolution. CrystEngComm, 2016, 18, 3161-3169.	1.3	14
102	Synthesis of silicon–germanium axial nanowire heterostructures in a solvent vapor growth system using indium and tin catalysts. Physical Chemistry Chemical Physics, 2015, 17, 6919-6924.	1.3	13
103	Complete assembly of Cu2ZnSnS4 (CZTS) nanorods at substrate interfaces using a combination of self and directed organisation. Chemical Communications, 2016, 52, 11587-11590.	2.2	13
104	Co-crystal polymorphic control by nanodroplet and electrical confinement. CrystEngComm, 2019, 21, 2845-2848.	1.3	13
105	Two-dimensional copper based colloidal nanocrystals: synthesis and applications. Nanoscale, 2022, 14, 2885-2914.	2.8	13
106	The synthesis of matrices of embedded semiconducting nanowires. Faraday Discussions, 2004, 125, 311.	1.6	12
107	Silver tip formation on colloidal CdSe nanorods by a facile phase transfer protocol. Journal of Materials Chemistry, 2011, 21, 6815.	6.7	12
108	Crystallization of Semiconductor Nanorods into Perfectly Faceted Hexagonal Superstructures. Particle and Particle Systems Characterization, 2013, 30, 624-629.	1.2	12

#	Article	IF	CITATIONS
109	Investigation into the Selenization Mechanisms of Wurtzite CZTS Nanorods. ACS Applied Materials & Interfaces, 2018, 10, 7117-7125.	4.0	12
110	Amorphization driven Na-alloying in Si _{<i>x</i>} Ge _{1â^'<i>x</i>} alloy nanowires for Na-ion batteries. Journal of Materials Chemistry A, 2021, 9, 20626-20634.	5.2	12
111	Solid-state and particle size control of pharmaceutical cocrystals using atomization-based techniques. International Journal of Pharmaceutics, 2022, 621, 121798.	2.6	12
112	Production of biopharmaceutical dried-powders using supercritical CO2 technology. Journal of Supercritical Fluids, 2022, 187, 105645.	1.6	12
113	Protein immobilisation on perpendicularly aligned gold tipped nanorod assemblies. Chemical Communications, 2011, 47, 2655.	2.2	11
114	Promoting Cell Proliferation Using Water Dispersible Germanium Nanowires. PLoS ONE, 2014, 9, e108006.	1.1	11
115	Silicon nanowire growth on carbon cloth for flexible Li-ion battery anodes. Materials Today Energy, 2022, 27, 101030.	2.5	11
116	Synthesis of Curved Culn1–xGax(S1–ySey)2 Nanocrystals and Complete Characterization of Their Diffraction Contrast Effects. Chemistry of Materials, 2018, 30, 8679-8689.	3.2	10
117	Layered Bimetallic Metalâ€Organic Material Derived Cu ₂ SnS ₃ /SnS ₂ /C Composite for Anode Applications in Lithiumâ€lon Batteries. ChemElectroChem, 2018, 5, 3764-3770.	1.7	10
118	Synthesis and Characterization of CuZnSe ₂ Nanocrystals in Wurtzite, Zinc Blende, and Core–Shell Polytypes. Chemistry of Materials, 2019, 31, 10085-10093.	3.2	10
119	Development and validation of a two-dimensional population balance model for a supercritical CO2 antisolvent batch crystallization process. Advanced Powder Technology, 2020, 31, 3191-3204.	2.0	10
120	Insights into the Electrophoretic Deposition of Colloidal II-VI Nanorods: Optimization for Vertically and Horizontally Aligned Assemblies. Journal of the Electrochemical Society, 2015, 162, D3019-D3024.	1.3	9
121	Investigating Process Variables and Additive Selection To Optimize Polymorphic Control of Carbamazepine in a CO2 Antisolvent Crystallization Process. Organic Process Research and Development, 2020, 24, 1006-1017.	1.3	9
122	Formation of reworkable nanocomposite adhesives by dielectric heating of epoxy resin embedded Fe ₃ O ₄ hollow spheres. CrystEngComm, 2016, 18, 6096-6101.	1.3	8
123	Temperature controlled shape evolution of iron oxide nanostructures in HMTA media. RSC Advances, 2017, 7, 26328-26334.	1.7	8
124	The selective synthesis of nickel germanide nanowires and nickel germanide seeded germanium nanowires within a solvent vapour growth system. CrystEngComm, 2017, 19, 2072-2078.	1.3	8
125	Subsuming the Metal Seed to Transform Binary Metal Chalcogenide Nanocrystals into Multinary Compositions. ACS Nano, 2022, 16, 8917-8927.	7.3	8
126	Electrophoretic Deposition of Poly(3-decylthiophene) onto Gold-Mounted Cadmium Selenide Nanorods. Langmuir, 2011, 27, 13506-13513.	1.6	7

#	Article	IF	CITATIONS
127	Heteroaggregation assisted wet synthesis of core–shell silver–silica–cadmium selenide nanowires. Nanoscale, 2016, 8, 1200-1209.	2.8	7
128	Unraveling the Link between Solvent-Mediated Proton Transfer and the Salt Formation of Saccharin and Sulfamethazine. Crystal Growth and Design, 2019, 19, 613-619.	1.4	7
129	Precursor-Mediated Linear- and Branched-Polytypism Control in Cu _α Zn _β Sn _{Ĩ³} Se _{Ĩ′} Colloidal Nanocrystals Using a Dual-Injection Method. Chemistry of Materials, 2020, 32, 7254-7262.	3.2	7
130	High density and patternable growth of silicon, germanium and alloyed SiGe nanowires by a rapid anneal protocol. Journal of Materials Chemistry C, 2015, 3, 7455-7462.	2.7	6
131	Tin-Based Oxide, Alloy, and Selenide Li-Ion Battery Anodes Derived from a Bimetallic Metal–Organic Material. Journal of Physical Chemistry C, 2021, 125, 1180-1189.	1.5	6
132	Complete Synthesis of Germanium Nanocrystal Encrusted Carbon Colloids in Supercritical CO2and their Superhydrophobic Properties. Langmuir, 2011, 27, 11166-11173.	1.6	5
133	Pharmaceutical nanoparticle isolation using CO2-assisted dynamic bed coating. International Journal of Pharmaceutics, 2021, 592, 120032.	2.6	5
134	Electrophoretic Deposition of Spherical and Rod-Shaped Nanocrystals into Close Packed Superlattices. ECS Transactions, 2009, 19, 209-219.	0.3	4
135	Linear heterostructured Ni ₂ Si/Si nanowires with abrupt interfaces synthesised in solution. Nanoscale, 2018, 10, 19182-19187.	2.8	4
136	Highlighting the Importance of Full-Cell Testing for High Performance Anode Materials Comprising Li Alloying Nanowires. Journal of the Electrochemical Society, 2019, 166, A2784-A2790.	1.3	4
137	Evolution of Hierarchically Layered Cu-Rich Silicide Nanoarchitectures. Crystal Growth and Design, 2020, 20, 6677-6682.	1.4	4
138	Cortisone and cortisol break hydrogen-bonding rules to make a drug–prodrug solid solution. IUCrJ, 2020, 7, 1124-1130.	1.0	4
139	Temperature induced diameter variation of silicon nanowires <i>via</i> a liquid–solid phase transition in the Zn seed. Chemical Communications, 2021, 57, 12504-12507.	2.2	4
140	The Role of Software Engineering in Future Automotive Systems Development. SAE International Journal of Passenger Cars - Electronic and Electrical Systems, 2008, 1, 544-552.	0.3	3
141	Rechargeable Li-Ion Battery Anode of Indium Oxide with Visible to Infra-Red Transparency. ECS Transactions, 2013, 53, 53-61.	0.3	3
142	Multimodal surface analyses of chemistry and structure of biominerals in rodent pineal gland concretions. Applied Surface Science, 2019, 469, 378-386.	3.1	3
143	Phosphine free synthesis of copper telluride nanocrystals in 1-D and 2-D shapes using Dipehylditelluride (DPDTe) as an air-stable source Nanotechnology, 2022, , .	1.3	3
144	Surface plasmon propagation enhancement via bowtie antenna incorporation in Au–mica block waveguides. Applied Optics, 2018, 57, E50.	0.9	2

#	Article	IF	CITATIONS
145	Facet Specific Gold Tip Growth on Semiconductor Nanorods. ECS Transactions, 2009, 25, 17-29.	0.3	1
146	MBE Growth and Structural and Electrochemical Characterization of Tin Oxide and Indium Tin Oxide Nanoparticles Grown on Silicon for Li-ion Battery Anodes. ECS Transactions, 2013, 53, 1-10.	0.3	1
147	GREENLION Project: Advanced Manufacturing Processes for Low Cost Greener Li-Ion Batteries. Lecture Notes in Mobility, 2015, , 45-60.	0.2	1
148	Common Battery Anode Testing Protocols Are Not Suitable for New Combined Alloying and Conversion Materials. ChemElectroChem, 2018, 5, 3757-3763.	1.7	1
149	Silver Tip Formation on Colloidal CdSe Nanorods by a Facile Phase Transfer Protocol. Springer Proceedings in Physics, 2013, , 21-31.	0.1	1
150	Controlling morphological, orientational and material properties of mesoporous aluminosilicate films: enabling supercritical fluid deposition of perpendicularly ordered nanowire arrays. Studies in Surface Science and Catalysis, 2005, , 303-314.	1.5	0
151	Facet Specific Gold Tip Growth on Semiconductor Nanorod Assemblies. ECS Meeting Abstracts, 2009, , .	0.0	0
152	Water Dispersible Semiconductor Nanorod Assemblies Via a Facile Phase Transfer and Their Application as Fluorescent Biomarkers. Springer Proceedings in Physics, 2013, , 95-110.	0.1	0
153	Input coupling enhancement through antenna incorporation in thin Au-mica trench waveguides. Journal of the Optical Society of America B: Optical Physics, 2019, 36, 2954.	0.9	0
154	Advanced Balancing of Next-Generation Lithium-Ion Batteries: Prelithiation of a-Silicon Nanowires Using Excess Lithium Positive Electrodes. ECS Meeting Abstracts, 2022, MA2022-01, 2434-2434.	0.0	0