Sung-Jun Pang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8938271/publications.pdf Version: 2024-02-01

SUNC-IUN PANC

#	Article	IF	CITATIONS
1	Prediction of bending performance for a separable CLT-concrete composite slab connected by notch connectors. Journal of Building Engineering, 2022, 49, 103900.	3.4	4
2	Effects of knot area ratio on the bending properties of cross-laminated timber made from Korean pine. Wood Science and Technology, 2021, 55, 489-503.	3.2	6
3	Lateral resistance of mass timber shear wall connected by withdrawal-type connectors. Journal of Wood Science, 2021, 67, .	1.9	0
4	Prediction of Withdrawal Resistance of Single Screw on Korean Wood Products. Journal of the Korean Wood Science and Technology, 2021, 49, 93-102.	3.0	21
5	Swelling and shrinkage behaviors of cross-laminated timber made of different species with various lamina thickness and combinations. Construction and Building Materials, 2020, 240, 117924.	7.2	16
6	Prediction of withdrawal resistance for a screw in hybrid cross-laminated timber. Journal of Wood Science, 2020, 66, .	1.9	7
7	Sensitivity of censored data analysis to determine the characteristic value of structural timber. Journal of Wood Science, 2020, 66, .	1.9	4
8	Effects of combinations of lamina grade and thickness, and span-to-depth ratios on bending properties of cross-laminated timber (CLT) floor. Construction and Building Materials, 2019, 222, 142-151.	7.2	25
9	Moment and shear capacity of Ply-lam composed with plywood and structural timber under out-of-plane bending. Journal of Wood Science, 2019, 65, .	1.9	8
10	Effects of Density, Temperature, Size, Grain Angle of Wood Materials on Nondestructive Moisture Meters. Journal of the Korean Wood Science and Technology, 2019, 47, 40-50.	3.0	7
11	Stochastic model for predicting the bending strength of glued-laminated timber based on the knot area ratio and localized MOE in lamina. Journal of Wood Science, 2018, 64, 126-137.	1.9	4
12	Comparisons of bearing properties for various oriented glulam using digital image correlation. Journal of Wood Science, 2018, 64, 237-245.	1.9	5
13	Load sharing and weakest lamina effects on the compressive resistance of cross-laminated timber under in-plane loading. Journal of Wood Science, 2018, 64, 538-550.	1.9	16
14	Effect of incising on the long-term biodeterioration resistance of alkaline copper quaternary (ACQ) treated wood. European Journal of Wood and Wood Products, 2017, 75, 777-783.	2.9	5
15	Shear behavior of cross-laminated timber wall consisting of small panels. Journal of Wood Science, 2017, 63, 45-55.	1.9	11
16	Surface Checking Reduction Effect of Preservative-treated Korean Larch Round-woods with Various Physical Treatments. Journal of the Korean Wood Science and Technology, 2017, 45, 107-115.	3.0	3
17	Bending Behavior of Nailed-Jointed Cross-Laminated Timber Loaded Perpendicular to Plane. Journal of the Korean Wood Science and Technology, 2017, 45, 728-736.	3.0	4
18	Insulation Saving Effect for Korean Apartment House Using Cross-Laminated Timber (CLT). Journal of the Korean Wood Science and Technology, 2017, 45, 846-856.	3.0	6

Sung-Jun Pang

#	Article	IF	CITATIONS
19	Parametric study on the capability of three-dimensional finite element analysis (3D-FEA) of compressive behaviour of Douglas fir. Holzforschung, 2016, 70, 539-546.	1.9	6
20	Analysis of Allowable Stresses of Machine Graded Lumber in Korea. Journal of the Korean Wood Science and Technology, 2015, 43, 456-462.	3.0	1
21	Service Life Estimation of ACQ-treated Wood Based on Biodeterioration Resistance. Journal of the Korean Wood Science and Technology, 2015, 43, 641-651.	3.0	2
22	Determination of Grades and Design Strengths of Machine Graded Lumber in Korea. Journal of the Korean Wood Science and Technology, 2015, 43, 446-455.	3.0	2
23	Alternative experimental method to evaluate moment-carrying capacity of traditional wood-to-wood joint with small scale experiment. Holzforschung, 2013, 67, 93-97.	1.9	2
24	Indirect Detection of Internal Defects in Wooden Rafter with Ultrasound. Journal of the Korean Wood Science and Technology, 2013, 41, 164-172.	3.0	9
25	A Study on the Introduction and Settlement of the Labeling System for Wood-based Products and Expanding in Korea. Journal of the Korean Wood Science and Technology, 2013, 41, 258-268.	3.0	1
26	Effect of Test Zone Selection for Evaluating Bending Strength of Lumber. Journal of the Korean Wood Science and Technology, 2013, 41, 392-398.	3.0	2
27	Evaluation of Allowable Bending Stress of Dimension Lumber; Confidence Levels and Size-adjustment. Journal of the Korean Wood Science and Technology, 2013, 41, 432-439.	3.0	5
28	Evaluation of dismantled historical wooden members using portable ultrasonic system. , 2012, , .		0
29	Bending strength distributions and LRFD code conversion of Korean softwood species: Bending strength distributions and LRFD code conversion. , 2012, , .		0
30	Influence of crossing-beam shoulder and wood species on moment-carrying capacity in a Korean traditional dovetail joint. Journal of Wood Science, 2011, 57, 195-202.	1.9	14
31	Moment-Carrying Capacity of Dovetailed Mortise and Tenon Joints with or without Beam Shoulder. Journal of Structural Engineering, 2011, 137, 785-789.	3.4	43
32	Characteristic Evaluation of Bending Strength Distributions on Revised Korean Visual Grading Rule. Journal of the Korean Wood Science and Technology, 2011, 39, 1-7.	3.0	7
33	Bending Strength of Korean Softwood Species for 120×180 mm Structural Members. Journal of the Korean Wood Science and Technology, 2011, 39, 444-450.	3.0	6
34	Study of the Distribution Properties and LRFD Code Conversion in Japanese Larch. Journal of the Korean Wood Science and Technology, 2010, 38, 94-100.	3.0	7