Laurent Charlet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8937995/publications.pdf Version: 2024-02-01

220 papers	16,310 citations	13099 68 h-index	17105 122 g-index
232	232	232	13371
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Sorption isotherms: A review on physical bases, modeling and measurement. Applied Geochemistry, 2007, 22, 249-275.	3.0	1,320
2	Removal of Arsenic(III) from Groundwater by Nanoscale Zero-Valent Iron. Environmental Science & Technology, 2005, 39, 1291-1298.	10.0	1,051
3	Surface catalysis of uranium(VI) reduction by iron(II). Geochimica Et Cosmochimica Acta, 1999, 63, 2939-2955.	3.9	574
4	Surface Complexation of Ferrous Iron and Carbonate on Ferrihydrite and the Mobilization of Arsenic. Environmental Science & Technology, 2002, 36, 3096-3103.	10.0	561
5	A surface complexation model of the carbonate mineral-aqueous solution interface. Geochimica Et Cosmochimica Acta, 1993, 57, 3505-3518.	3.9	482
6	Selenium environmental cycling and bioavailability: a structural chemist point of view. Reviews in Environmental Science and Biotechnology, 2009, 8, 81-110.	8.1	370
7	Environmental Selenium Research: From Microscopic Processes to Global Understanding. Environmental Science & Technology, 2012, 46, 571-579.	10.0	348
8	X-ray absorption spectroscopic study of the sorption of Cr(III) at the oxide-water interface. Journal of Colloid and Interface Science, 1992, 148, 443-458.	9.4	309
9	Arsenic(III) Oxidation by Birnessite and Precipitation of Manganese(II) Arsenate. Environmental Science & Technology, 2002, 36, 493-500.	10.0	294
10	Mineral sequestration of CO2 by aqueous carbonation of coal combustion fly-ash. Journal of Hazardous Materials, 2009, 161, 1347-1354.	12.4	286
11	Sorption and speciation of heavy metals on hydrous Fe and Mn oxides. From microscopic to macroscopic. Applied Clay Science, 1992, 7, 201-223.	5.2	253
12	The Mechanism of Selenate Adsorption on Goethite and Hydrous Ferric Oxide. Journal of Colloid and Interface Science, 1994, 168, 87-93.	9.4	246
13	Arsenic in Shallow, Reducing Groundwaters in Southern Asia: An Environmental Health Disaster. Elements, 2006, 2, 91-96.	0.5	235
14	X-ray absorption spectroscopic study of the sorption of Cr(III) at the oxide-water interface. Journal of Colloid and Interface Science, 1992, 148, 425-442.	9.4	221
15	Structure and Stability of Cd2+ Surface Complexes on Ferric Oxides. Journal of Colloid and Interface Science, 1994, 168, 73-86.	9.4	215
16	Arsenic mobility in the ambient sulfidic environment: Sorption of arsenic(V) and arsenic(III) onto disordered mackinawite. Geochimica Et Cosmochimica Acta, 2005, 69, 3483-3492.	3.9	211
17	Selenite Reduction by Mackinawite, Magnetite and Siderite: XAS Characterization of Nanosized Redox Products. Environmental Science & Technology, 2008, 42, 1984-1989.	10.0	211
18	Electron transfer at the mineral/water interface: Selenium reduction by ferrous iron sorbed on clay. Geochimica Et Cosmochimica Acta, 2007, 71, 5731-5749.	3.9	181

#	Article	IF	CITATIONS
19	The surface chemistry of divalent metal carbonate minerals; a critical assessment of surface charge and potential data using the charge distribution multi-site ion complexation model. Numerische Mathematik, 2008, 308, 905-941.	1.4	170
20	Interactions of Oxytetracycline with a Smectite Clay: A Spectroscopic Study with Molecular Simulations. Environmental Science & amp; Technology, 2010, 44, 7839-7845.	10.0	159
21	X-ray absorption and photoelectron spectroscopy investigation of selenite reduction by Fell-bearing minerals. Journal of Contaminant Hydrology, 2008, 102, 228-245.	3.3	155
22	Nanomorphology of montmorillonite particles: Estimation of the clay edge sorption site density by low-pressure gas adsorption and AFM observations. American Mineralogist, 2003, 88, 1989-1995.	1.9	150
23	Surface chemistry of disordered mackinawite (FeS). Geochimica Et Cosmochimica Acta, 2005, 69, 3469-3481.	3.9	149
24	Chemodynamics of an arsenic "hotspot―in a West Bengal aquifer: A field and reactive transport modeling study. Applied Geochemistry, 2007, 22, 1273-1292.	3.0	144
25	A review of arsenic presence in China drinking water. Journal of Hydrology, 2013, 492, 79-88.	5.4	144
26	The titration of clay minerals. Journal of Colloid and Interface Science, 2004, 273, 234-246.	9.4	143
27	Arsenite sorption and co-precipitation with calcite. Chemical Geology, 2006, 233, 328-336.	3.3	140
28	In situ atomic force microscopy study of hectorite and nontronite dissolution: Implications for phyllosilicate edge surface structures and dissolution mechanisms. American Mineralogist, 2001, 86, 411-423.	1.9	136
29	Quantification of trace arsenic in soils by field-portable X-ray fluorescence spectrometry: Considerations for sample preparation and measurement conditions. Journal of Hazardous Materials, 2013, 262, 1213-1222.	12.4	136
30	Redox potential measurements and Mössbauer spectrometry of FeII adsorbed onto FeIII (oxyhydr)oxides. Geochimica Et Cosmochimica Acta, 2005, 69, 4801-4815.	3.9	135
31	Sorption of Metal Ions on Clay Minerals. Journal of Colloid and Interface Science, 1999, 215, 140-158.	9.4	126
32	U(VI) Sorption and Reduction by Fe(II) Sorbed on Montmorillonite. Environmental Science & Technology, 2010, 44, 3779-3785.	10.0	125
33	N-compound reduction and actinide immobilisation in surficial fluids by Fe(II): the surface î~†FeIIIOFeIIOH° species, as major reductant. Chemical Geology, 1998, 151, 85-93.	3.3	123
34	The Acid/Base Chemistry of Montmorillonite. Radiochimica Acta, 1994, 66-67, 157-162.	1.2	118
35	Sorption of metal ions on clay minerals. III. Nucleation and epitaxial growth of Zn phyllosilicate on the edges of hectorite. Geochimica Et Cosmochimica Acta, 2001, 65, 4155-4170.	3.9	111
36	Calcite precipitation from CO2–H2O–Ca(OH)2 slurry under high pressure of CO2. Journal of Crystal Growth, 2007, 308, 228-236.	1.5	111

#	Article	IF	CITATIONS
37	Sodiumâ€Calcium and Sodiumâ€Magnesium Exchange on Wyoming Bentonite in Perchlorate and Chloride Background Ionic Media. Soil Science Society of America Journal, 1983, 47, 51-56.	2.2	110
38	Oxidation State and Local Structure of Plutonium Reacted with Magnetite, Mackinawite, and Chukanovite. Environmental Science & Technology, 2011, 45, 7267-7274.	10.0	103
39	The titration of clay minerals. Journal of Colloid and Interface Science, 2004, 273, 224-233.	9.4	102
40	Selenium distribution and speciation in plant parts of wheat (Triticum aestivum) and Indian mustard (Brassica juncea) from a seleniferous area of Punjab, India. Science of the Total Environment, 2015, 505, 952-961.	8.0	102
41	Evidence for the neoformation of clays upon sorption of Co(II) and Ni(II) on silicates. Geochimica Et Cosmochimica Acta, 1994, 58, 2577-2582.	3.9	101
42	Reactive transport of uranyl in a goethite column: an experimental and modelling study. Chemical Geology, 1998, 151, 107-128.	3.3	100
43	Adsorption of arsenite and arsenate onto muscovite and biotite mica. Journal of Colloid and Interface Science, 2007, 309, 392-401.	9.4	99
44	Novel chitosan goethite bionanocomposite beads for arsenic remediation. Water Research, 2016, 101, 1-9.	11.3	99
45	Effect of pH on Aqueous Se(IV) Reduction by Pyrite. Environmental Science & Technology, 2011, 45, 2704-2710.	10.0	98
46	Natural attenuation of TCE, As, Hg linked to the heterogeneous oxidation of Fe(II): an AFM study. Chemical Geology, 2002, 190, 303-319.	3.3	95
47	Mobility of arsenic in West Bengal aquifers conducting low and high groundwater arsenic. Part I: Comparative hydrochemical and hydrogeological characteristics. Applied Geochemistry, 2008, 23, 977-995.	3.0	94
48	Carbonation of alkaline paper mill waste to reduce CO2 greenhouse gas emissions into the atmosphere. Applied Geochemistry, 2008, 23, 2292-2300.	3.0	94
49	Rising arsenic risk?. Nature Geoscience, 2009, 2, 383-384.	12.9	93
50	Fe(II)-Na(I)-Ca(II) Cation Exchange on Montmorillonite in Chloride Medium: Evidence for Preferential Clay Adsorption of Chloride – Metal Ion Pairs in Seawater. Aquatic Geochemistry, 2005, 11, 115-137.	1.3	91
51	Adsorption of protons, Fe(II) and Al(III) on lepidocrocite (Î ³ -FeOOH). Colloids and Surfaces, 1992, 63, 259-268.	0.9	89
52	A multi-analytical study of bone diagenesis: the Neolithic site of Bercy (Paris, France). Measurement Science and Technology, 2003, 14, 1608-1619.	2.6	89
53	Cation adsorption on oxides and clays: The aluminum case. Aquatic Sciences, 1993, 55, 291-303.	1.5	88
54	The dissolution of hectorite: In-situ, real-time observations using atomic force microscopy. American Mineralogist, 2000, 85, 1209-1216.	1.9	87

4

#	Article	IF	CITATIONS
55	Surface charge of MnCO3and FeCO3. Geochimica Et Cosmochimica Acta, 1990, 54, 2329-2336.	3.9	86
56	Uranyl Surface Speciation on Silica Particles Studied by Time-Resolved Laser-Induced Fluorescence Spectroscopy. Journal of Colloid and Interface Science, 2001, 239, 358-368.	9.4	86
57	Sorption of Metal lons on Clay Minerals. Journal of Colloid and Interface Science, 1999, 220, 392-405.	9.4	84
58	Ligand effect on the adsorption of heavy metals: The sulfate ? Cadmium ? Goethite case. Water, Air, and Soil Pollution, 1993, 68, 241-255.	2.4	83
59	From adsorption to precipitation: Sorption of Mn2+ on FeCO3(s). Geochimica Et Cosmochimica Acta, 1989, 53, 2787-2796.	3.9	82
60	Evidence for the Formation of Trioctahedral Clay upon Sorption of Co2+ on Quartz. Journal of Colloid and Interface Science, 1999, 220, 181-197.	9.4	80
61	Aqueous cadmium uptake by calcite: a stirred flow-through reactor study. Geochimica Et Cosmochimica Acta, 2003, 67, 2763-2774.	3.9	79
62	Neurodegenerative diseases and exposure to the environmental metals Mn, Pb, and Hg. Coordination Chemistry Reviews, 2012, 256, 2147-2163.	18.8	78
63	Reactivities of Fe(II) on Calcite: Selenium Reduction. Environmental Science & Technology, 2010, 44, 1288-1294.	10.0	77
64	Adsorption mechanisms of Zn on hectorite as a function of time, pH, and ionic strength. Numerische Mathematik, 2001, 301, 798-830.	1.4	75
65	Mobility of arsenic in the sub-surface environment: An integrated hydrogeochemical study and sorption model of the sandy aquifer materials. Journal of Hydrology, 2009, 364, 236-248.	5.4	73
66	The impact of oscillating redox conditions: Arsenic immobilisation in contaminated calcareous floodplain soils. Environmental Pollution, 2013, 178, 254-263.	7.5	73
67	Characterization of aquifers conducting groundwaters with low and high arsenic concentrations: a comparative case study from West Bengal, India. Mineralogical Magazine, 2005, 69, 841-854.	1.4	72
68	Reversible surface-sorption-induced electron-transfer oxidation of Fe(II) at reactive sites on a synthetic clay mineral. Geochimica Et Cosmochimica Acta, 2007, 71, 863-876.	3.9	71
69	Bengal arsenic, an archive of Himalaya orogeny and paleohydrology. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2007, 42, 1785-1794.	1.7	70
70	Natural wetland emissions of methylated trace elements. Nature Communications, 2014, 5, 3035.	12.8	69
71	Decontamination of TCE- and U-Rich Waters by Granular Iron: Role of Sorbed Fe(II). Journal of Environmental Engineering, ASCE, 1998, 124, 25-30.	1.4	68
72	Cation Selectivity in Sodiumâ€Calcium, Sodiumâ€Magnesium, and Calciumâ€Magnesium Exchange on Wyoming Bentonite at 298 K. Soil Science Society of America Journal, 1983, 47, 917-921.	2.2	67

#	Article	IF	CITATIONS
73	Reduction of antimony by nano-particulate magnetite and mackinawite. Mineralogical Magazine, 2008, 72, 185-189.	1.4	67
74	On–Off Mobilization of Contaminants in Soils during Redox Oscillations. Environmental Science & Technology, 2015, 49, 3015-3023.	10.0	66
75	Trace element composition of archaeological bones and post-mortem alteration in the burial environment. Nuclear Instruments & Methods in Physics Research B, 1999, 150, 656-662.	1.4	65
76	Enhanced interlayer trapping of a tetracycline antibiotic within montmorillonite layers in the presence of Ca and Mg. Journal of Colloid and Interface Science, 2016, 464, 153-159.	9.4	64
77	Decoupling of arsenic and iron release from ferrihydrite suspension under reducing conditions: a biogeochemical model. Geochemical Transactions, 2007, 8, 12.	0.7	63
78	A review of the retention mechanisms of redox-sensitive radionuclides in multi-barrier systems. Applied Geochemistry, 2019, 100, 414-431.	3.0	63
79	Comparison of arsenic concentrations in simultaneously-collected groundwater and aquifer particles from Bangladesh, India, Vietnam, and Nepal. Applied Geochemistry, 2008, 23, 3244-3251.	3.0	62
80	Nanocomposite Pyrite–Greigite Reactivity toward Se(IV)/Se(VI). Environmental Science & Technology, 2012, 46, 4869-4876.	10.0	62
81	Uranium facilitated transport by water-dispersible colloids in field and soil columns. Science of the Total Environment, 2010, 408, 2118-2128.	8.0	61
82	Plate tectonics influence on geogenic arsenic cycling: From primary sources to global groundwater enrichment. Science of the Total Environment, 2019, 683, 793-807.	8.0	60
83	Lichen and soil as indicators of an atmospheric mercury contamination in the vicinity of a chlor-alkali plant (Grenoble, France). Ecological Indicators, 2012, 13, 178-183.	6.3	59
84	Reactivity at (nano)particle-water interfaces, redox processes, and arsenic transport in the environment. Comptes Rendus - Geoscience, 2011, 343, 123-139.	1.2	58
85	Speciation of arsenic in Greek travertines: Co-precipitation of arsenate with calcite. Geochimica Et Cosmochimica Acta, 2013, 106, 99-110.	3.9	58
86	Selenite Uptake by Ca–Al LDH: A Description of Intercalated Anion Coordination Geometries. Environmental Science & Technology, 2018, 52, 1624-1632.	10.0	58
87	Mechanism of chromium(III) oxidation by Na-buserite. The Journal of Physical Chemistry, 1995, 99, 16662-16669.	2.9	56
88	Comparison of dissolved and particulate arsenic distributions in shallow aquifers of Chakdaha, India, and Araihazar, Bangladesh. Geochemical Transactions, 2008, 9, 1.	0.7	56
89	Diffusive transport and reaction in clay rocks: A storage (nuclear waste, CO2, H2), energy (shale gas) and water quality issue. Advances in Water Resources, 2017, 106, 39-59.	3.8	56
90	A spectroscopic and voltammetric study of the pH-dependent Cu(II) coordination to the peptide GGGTH: relevance to the fifth Cu(II) site in the prion protein. Journal of Biological Inorganic Chemistry, 2006, 11, 735-744.	2.6	55

#	ARTICLE	IF	CITATIONS
91	Methods for Performing Atomic Force Microscopy Imaging of Clay Minerals in Aqueous Solutions. Clays and Clay Minerals, 1999, 47, 573-581.	1.3	54
92	Adsorption of Thorium on Amorphous Silica: An EXAFS Study. Journal of Colloid and Interface Science, 1997, 194, 10-21.	9.4	52
93	Structural study of selenium(IV) substitutions in calcite. Chemical Geology, 2010, 270, 249-256.	3.3	52
94	Atmospheric mercury incorporation in soils of an area impacted by a chlor-alkali plant (Grenoble,) Tj ETQq0 0 0 rg	BT /Overlo 8.0	
95	Arsenic Speciation in Mekong Delta Sediments Depends on Their Depositional Environment. Environmental Science & Technology, 2018, 52, 3431-3439.	10.0	50
96	Inhibition of U(VI) Reduction by Synthetic and Natural Pyrite. Environmental Science & Technology, 2014, 48, 10716-10724.	10.0	48
97	Hydrogen uptake and diffusion in Callovo-Oxfordian clay rock for nuclear waste disposal technology. Applied Geochemistry, 2014, 49, 168-177.	3.0	48
98	Monovalent Ion Adsorption by an Oxisol. Soil Science Society of America Journal, 1987, 51, 1155-1160.	2.2	47
99	Hydrous ferric oxide: evaluation of Cd–HFO surface complexation models combining CdK EXAFS data, potentiometric titration results, and surface site structures identified from mineralogical knowledge. Journal of Colloid and Interface Science, 2003, 266, 1-18.	9.4	47
100	Arsenate Incorporation in Gypsum Probed by Neutron, X-ray Scattering and Density Functional Theory Modeling. Journal of Physical Chemistry A, 2008, 112, 5159-5166.	2.5	47
101	Adsorption of Hydrogen Gas and Redox Processes in Clays. Environmental Science & Technology, 2012, 46, 3574-3579.	10.0	47

102	Arsenic uptake by gypsum and calcite: Modelling and probing by neutron and X-ray scattering. Physica B: Condensed Matter, 2006, 385-386, 935-937.	2.7	45
103	Textural properties of synthetic nano-calcite produced by hydrothermal carbonation of calcium hydroxide. Journal of Crystal Growth, 2008, 310, 2946-2953.	1.5	43
104	Experimental evidence for Ca-chloride ion pairs in the interlayer of montmorillonite. An XRD profile modeling approach. Clays and Clay Minerals, 2005, 53, 348-360.	1.3	40
105	Hydrogen adsorption and diffusion in synthetic Na-montmorillonites at high pressures and temperature. International Journal of Hydrogen Energy, 2015, 40, 2698-2709.	7.1	38
106	Evidence of Multiple Sorption Modes in Layered Double Hydroxides Using Mo As Structural Probe. Environmental Science & Technology, 2017, 51, 5531-5540.	10.0	38
107	Sulfate adsorption on a variable charge soil and on reference minerals. Agriculture, Ecosystems and Environment, 1993, 47, 87-102.	5.3	36
108	Sorption and catalytic oxidation of Fe(II) at the surface of calcite. Geochimica Et Cosmochimica Acta, 2009, 73, 1826-1840.	3.9	36

#	Article	IF	CITATIONS
109	Preparation and characterization of a single-walled aluminosilicate nanotube-iron oxide composite: Its applications to removal of aqueous arsenate. Materials Research Bulletin, 2014, 51, 145-152.	5.2	36
110	Title is missing!. Water, Air, and Soil Pollution, 1997, 100, 289-296.	2.4	35
111	Spectroscopic studies of arsenic retention onto biotite. Chemical Geology, 2011, 281, 83-92.	3.3	35
112	Interaction of aqueous Se(IV)/Se(VI) with FeSe/FeSe2: Implication to Se redox process. Journal of Hazardous Materials, 2013, 248-249, 20-28.	12.4	34
113	From mastodon ivory to gemstone: The origin of turquoise color in odontolite. American Mineralogist, 2001, 86, 1519-1524.	1.9	33
114	Baseline investigation of (methyl)mercury in waters, soils, sediments and key foodstuffs in the Lower Mekong Basin: The rapidly developing city of Vientiane (Lao PDR). Journal of Geochemical Exploration, 2014, 143, 96-102.	3.2	32
115	Early Palaeolithic bone diagenesis in the Arago cave at Tautavel, France. Mineralogical Magazine, 1999, 63, 801-812.	1.4	31
116	Fe(II)â^'Fe(III)-Bearing Phases As a Mineralogical Control on the Heterogeneity of Arsenic in Southeast Asian Groundwater. Environmental Science & Technology, 2010, 44, 7541-7547.	10.0	31
117	A hundred year record of industrial and urban development in French Alps combining Hg accumulation rates and isotope composition in sediment archives from Lake Luitel. Chemical Geology, 2016, 431, 10-19.	3.3	30
118	Interstratification Patterns from the pH-Dependent Intercalation of a Tetracycline Antibiotic within Montmorillonite Layers. Langmuir, 2013, 29, 4492-4501.	3.5	28
119	Crumpling of silver nanowires by endolysosomes strongly reduces toxicity. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 14893-14898.	7.1	26
120	Amazonian former gold mined soils as a source of methylmercury: Evidence from a small scale watershed in French Guiana. Water Research, 2011, 45, 2659-2669.	11.3	25
121	Bivalent Ion Adsorption by an Oxisol. Soil Science Society of America Journal, 1989, 53, 691-695.	2.2	24
122	Hydration of Hg2+ in Aqueous Solution Studied by Neutron Diffraction with Isotopic Substitution. Journal of Physical Chemistry A, 2007, 111, 5123-5125.	2.5	24
123	Electrical resistivity investigation of the arsenic affected alluvial aquifers in West Bengal, India: usefulness in identifying the areas of low and high groundwater arsenic. Environmental Earth Sciences, 2010, 60, 873-884.	2.7	24
124	Origin of arsenic in Late Pleistocene to Holocene sediments in the Nawalparasi district (Terai, Nepal). Environmental Earth Sciences, 2015, 74, 2571-2593.	2.7	24
125	A dynamic study of the sorption and the transport processes of cadmium in calcareous sandy soils. Waste Management, 2002, 22, 201-207.	7.4	23
126	Formation of dissolved gaseous mercury in a tropical lake (Petit-Saut reservoir, French Guiana). Science of the Total Environment, 2006, 364, 260-271.	8.0	23

#	Article	IF	CITATIONS
127	Modelling CEC variations versus structural iron reduction levels in dioctahedral smectites. Existing approaches, new data and model refinements. Journal of Colloid and Interface Science, 2013, 407, 397-409.	9.4	23
128	The reductive immobilization of aqueous Se(IV) by natural pyrrhotite. Journal of Hazardous Materials, 2014, 276, 422-432.	12.4	23
129	Influence of Surface Compositions on the Reactivity of Pyrite toward Aqueous U(VI). Environmental Science & Technology, 2020, 54, 8104-8114.	10.0	23
130	Production of gaseous mercury in tropical hydromorphic soils in the presence of ferrous iron: a laboratory study. European Journal of Soil Science, 2006, 57, 190-199.	3.9	22
131	Reconstructing recent environmental changes from proglacial lake sediments in the Western Alps (Lake Blanc Huez, 2543 m a.s.l., Grandes Rousses Massif, France). Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 252, 586-600.	2.3	22
132	H2 dynamics in the soil of a H2-emitting zone (São Francisco Basin, Brazil): Microbial uptake quantification and reactive transport modelling. Applied Geochemistry, 2020, 112, 104474.	3.0	22
133	Selenium nanoparticles trigger alterations in ovarian cancer cell biomechanics. Nanomedicine: Nanotechnology, Biology, and Medicine, 2020, 29, 102258.	3.3	22
134	Superior approach to the inferior laryngeal nerve in thyroid surgery: anatomy, surgical technique and indications. Surgical and Radiologic Anatomy, 2006, 28, 631-636.	1.2	21
135	SERENADE: safer and ecodesign research and education applied to nanomaterial development, the new generation of materials safer by design. Environmental Science: Nano, 2017, 4, 526-538.	4.3	21
136	Estimation of nitrate retention in a Ferralsol by a transient-flow method. European Journal of Soil Science, 2003, 54, 505-516.	3.9	20
137	Water–clay surface interaction: A neutron scattering study. Chemical Physics, 2010, 374, 55-61.	1.9	20
138	Nanostructured calcite precipitated under hydrothermal conditions in the presence of organic and inorganic selenium. Chemical Geology, 2011, 290, 109-120.	3.3	20
139	Sub-ppm level high energy resolution fluorescence detected X-ray absorption spectroscopy of selenium in articular cartilage. Analyst, The, 2019, 144, 3488-3493.	3.5	20
140	EXAFS Study of Zn and ZnEDTA Sorption at the Goethite (α-FeOOH)/Water Interface. European Physical Journal Special Topics, 1997, 7, C2-823-C2-824.	0.2	20
141	Methylmercury formation in the anoxic waters of the Petit-Saut reservoir (French Guiana) and its spreading in the adjacent Sinnamary river. European Physical Journal Special Topics, 2003, 107, 327-331.	0.2	19
142	Hydration of Na ⁺ , Ni ²⁺ , and Sm ³⁺ in the Interlayer of Hectorite: A Quasielastic Neutron Scattering Study. Journal of Physical Chemistry C, 2009, 113, 13801-13812.	3.1	19
143	As release under the microbial sulfate reduction during redox oscillations in the upper Mekong delta aquifers, Vietnam: A mechanistic study. Science of the Total Environment, 2019, 663, 718-730.	8.0	19
144	Methylmercury in tailings ponds of Amazonian gold mines (French Guiana): Field observations and an experimental flocculation method for in situ remediation. Applied Geochemistry, 2011, 26, 222-229.	3.0	18

#	Article	IF	CITATIONS
145	Silver and lead in high-altitude lake sediments: Proxies for climate changes and human activities. Applied Geochemistry, 2012, 27, 760-773.	3.0	18
146	Geogenic arsenic in groundwaters in the western Alps. Journal of Hydrology, 2014, 518, 317-325.	5.4	18
147	Redox reaction of aqueous selenite with As-rich pyrite from Jiguanshan ore mine (China): Reaction products and pathway. Applied Geochemistry, 2014, 47, 130-140.	3.0	18
148	Deconstructing the redox cascade: what role do microbial exudates (flavins) play?. Environmental Chemistry, 2017, 14, 515.	1.5	18
149	Kinetics of FeSe2 oxidation by ferric iron and its reactivity compared with FeS2. Science China Chemistry, 2014, 57, 1300-1309.	8.2	17
150	New insights on the biomineralisation process developing in human lungs around inhaled asbestos fibres. Scientific Reports, 2017, 7, 44862.	3.3	17
151	In Situ Characterization of Heavy Metal Surface Reactions: The Chromium Case. International Journal of Environmental Analytical Chemistry, 1992, 46, 97-108.	3.3	16
152	Biogeochemistry of Major Redox Elements and Mercury in a Tropical Reservoir Lake (Petit Saut, French) Tj ETQqC	0.0 rgBT	Oyerlock 10
153	Dissolved osmium in Bengal plain groundwater: Implications for the marine Os budget. Geochimica Et Cosmochimica Acta, 2010, 74, 3432-3448.	3.9	16
154	Speciation dynamics of oxyanion contaminants (As, Sb, Cr) in argillaceous suspensions during oxic-anoxic cycles. Applied Geochemistry, 2018, 91, 75-88.	3.0	16
155	Uranium behaviour in natural environments. , 2000, , .		15
156	Selenite Sorption on Hydrated CEM-V/A Cement in the Presence of Steel Corrosion Products: Redox vs Nonredox Sorption. Environmental Science & Technology, 2020, 54, 2344-2352.	10.0	14
157	Mobilization of arsenic in sedimentary aquifer vis-Ã-vis subsurface iron reduction processes. European Physical Journal Special Topics, 2003, 107, 293-296.	0.2	13
158	Cartilage tympanoplasty: postoperative functional results. European Archives of Oto-Rhino-Laryngology, 2008, 265, 1195-1198.	1.6	13
159	Risk of arsenic transfer to a semi-confined aquifer and the effect of water level fluctuation in North Mortagne, France at a former industrial site. Science of the Total Environment, 2001, 277, 133-147.	8.0	12
160	In Vitro Dermal Safety Assessment of Silver Nanowires after Acute Exposure: Tissue vs. Cell Models. Nanomaterials, 2018, 8, 232.	4.1	12
161	Adsorption and Heterogeneous Reduction of Arsenic at the Phyllosilicate-Water Interface. ACS Symposium Series, 2005, , 41-59.	0.5	11
162	Curvature-induced hydrophobicity at imogolite–water interfaces. Environmental Science: Nano, 2020, 7, 2759-2772.	4.3	11

#	Article	IF	CITATIONS
163	Retardation of arsenic transport by oxidized Holocene aquifer sediments of West Bengal, India. Journal of Hydrology, 2014, 518, 460-463.	5.4	10
164	Synthesis of a Se ⁰ /Calcite Composite Using Hydrothermal Carbonation of Ca(OH) ₂ Coupled to a Complex Selenocystine Fragmentation. Crystal Growth and Design, 2008, 8, 2497-2504.	3.0	9
165	The influence of pH and reaction time on the formation of FeSe2 upon selenite reduction by nano-sized pyrite-greigite. Radiochimica Acta, 2016, 104, 649-656.	1.2	9
166	Phase Transition and Liquid-like Superionic Conduction in Ag ₂ S. Journal of Physical Chemistry C, 2020, 124, 10150-10158.	3.1	9
167	Arsenic removal by gypsum and calcite in lacustrine environments. European Physical Journal Special Topics, 2003, 107, 1153-156.	0.2	8
168	Biotic versus abiotic calcite formation on prehistoric cave paintings: the Arcy-sur-Cure â€~Grande Grotte' (Yonne, France) case. Geological Society Special Publication, 2007, 279, 185-197.	1.3	8
169	Selenium Deficiency—From Soil to Thyroid Cancer. Applied Sciences (Switzerland), 2020, 10, 5368.	2.5	8
170	Nanoscale Ion Dynamics Control on Amorphous Calcium Carbonate Crystallization: Precise Control of Calcite Crystal Sizes. Journal of Physical Chemistry C, 2020, 124, 25645-25656.	3.1	8
171	Diffusion in Archaeological Bone. Defect and Diffusion Forum, 2001, 194-199, 953-960.	0.4	7
172	Redox processes in a eutrophic coal-mine lake. Mineralogical Magazine, 2005, 69, 797-805.	1.4	7
173	On the mechanisms of dissolution of montroydite [HgO(s)]: Dependence of the dissolution rate on pH, temperature, and stirring rate. Journal of Colloid and Interface Science, 2006, 297, 696-704.	9.4	7
174	Method development for evaluating the redox state of Callovo-Oxfordian clayrock and synthetic montmorillonite for nuclear waste management. Applied Geochemistry, 2014, 49, 184-191.	3.0	7
175	Influence of Silica Coatings on Magnetite-Catalyzed Selenium Reduction. Environmental Science & Technology, 2021, 55, 3021-3031.	10.0	7
176	The SERENADE project; a step forward in the safe by design process of nanomaterials: The benefits of a diverse and interdisciplinary approach. Nano Today, 2021, 37, 101065.	11.9	7
177	Long-Term ¹³ C Uptake by ¹² C-Enriched Calcite. ACS Earth and Space Chemistry, 2021, 5, 998-1005.	2.7	7
178	Hydration and hydrolysis of samarium (III) in montmorillonite clay: a neutron diffraction study. Journal of Physics Condensed Matter, 2008, 20, 104207.	1.8	6
179	Redox Oscillation Impact on Natural and Engineered Biogeochemical Systems: Chemical Resilience and Implications for Contaminant Mobility. Procedia Earth and Planetary Science, 2013, 7, 135-138.	0.6	6
180	Effects of redox oscillations on the phosphogypsum waste in an estuarine salt-marsh system. Chemosphere, 2020, 242, 125174.	8.2	6

#	Article	IF	CITATIONS
181	Acid volatile sulfides and simultaneously extracted metals: A new miniaturized â€~purge and trap' system for laboratory and field measurements. Talanta, 2021, 233, 122490.	5.5	6
182	DNA Double-Strand Breaks Induced in Human Cells by Twelve Metallic Species: Quantitative Inter-Comparisons and Influence of the ATM Protein. Biomolecules, 2021, 11, 1462.	4.0	6
183	DNA Double-Strand Breaks Induced in Human Cells by 6 Current Pesticides: Intercomparisons and Influence of the ATM Protein. Biomolecules, 2022, 12, 250.	4.0	6
184	Study of inorganic ligand-chromium(III)-surface ternary complexes by ESR spectroscopy. Aquatic Sciences, 1990, 52, 93-102.	1.5	5
185	Arsenic sorption onto disordered mackinawite as a control on the mobility of arsenic in the ambient sulphidic environment. European Physical Journal Special Topics, 2003, 107, 1377-1380.	0.2	5
186	Reactivity of bentonite: an additive model applied to uranyl sorption. Interface Science and Technology, 2006, , 539-552.	3.3	5
187	Hydration and hydrolysys of Sm ³⁺ and Eu ³⁺ in a clay interlayer: a neutron diffraction study with isotopic substitution. Radiochimica Acta, 2008, 96, 679-683.	1.2	5
188	The shortâ€range order of ions in clay minerals: Sm ³⁺ coordination. Physica Status Solidi (A) Applications and Materials Science, 2011, 208, 2293-2298.	1.8	5
189	Physical stability of highly concentrated injectable drugs solutions used in intensive care units. Annales Pharmaceutiques Francaises, 2017, 75, 185-188.	1.0	5
190	Interplay of S and As in Mekong Delta sediments during redox oscillations. Geoscience Frontiers, 2019, 10, 1715-1729.	8.4	5
191	Water Trapping Dynamics in Carbohydrate-Populated Smectite Interlayer Nanopores. Journal of Physical Chemistry C, 2019, 123, 28816-28827.	3.1	5
192	Gentamicin-Montmorillonite Intercalation Compounds as an Active Component of Hydroxypropylmethylcellulose Bionanocomposite Films with Antimicrobial Properties. Clays and Clay Minerals, 2021, 69, 576-588.	1.3	5
193	The Acid/Base Chemistry of Montmorillonite. Radiochimica Acta, 1994, 66-67, 157-162.	1.2	4
194	Surface Complexation of Zinc Cation with Hydroxyapatite, Molecular Dynamics and Surface Durability. Interface Science and Technology, 2006, 11, 301-323.	3.3	4
195	Éloge de la Méthode: A Tribute to Garrison Sposito on the Occasion of His Retirement. Frontiers in Environmental Science, 2016, 4, .	3.3	4
196	Industrial Mercury Pollution in a Mountain Valley: A Combined Geophysical and Geochemical Study. Procedia Earth and Planetary Science, 2017, 17, 77-80.	0.6	4
197	XANES-Based Determination of Redox Potentials Imposed by Steel Corrosion Products in Cement-Based Media. Environmental Science & amp; Technology, 2018, 52, 11931-11940.	10.0	4
198	An electrochemical method to rapidly assess the environmental risk of silver release from nanowire transparent conductive films. NanoImpact, 2020, 18, 100217.	4.5	4

#	Article	IF	CITATIONS
199	Power Generation: Feedstock for High-Value Sulfate Minerals. Minerals (Basel, Switzerland), 2020, 10, 188.	2.0	4
200	Redox Interaction between Selenite and Mackinawite in Cement Pore Water. Environmental Science & Technology, 2022, 56, 5602-5610.	10.0	4
201	Proposed Trade Agreements Would Make Policy Implications of Environmental Research Entirely Irrelevant. Environmental Science & Technology, 2014, 48, 1370-1371.	10.0	3
202	From Water-rock Interactions to the DNA: A Review of Selenium Issues. Procedia Earth and Planetary Science, 2017, 17, 698-701.	0.6	3
203	Distribution of anthropogenic mercury in French Guyana river sediments downstream from gold mining sites. European Physical Journal Special Topics, 2003, 107, 1263-1266.	0.2	3
204	In-situ X-ray absorption study of the mechanism of Cr(III) oxidation at the Mn oxide/water interface. Chemical Geology, 1990, 84, 275-278.	3.3	2
205	Propagation of a natural arsenic plume in West Bengal, India. European Physical Journal Special Topics, 2003, 107, 285-288.	0.2	2
206	Reply to the comment on "Mobility of arsenic in West Bengal aquifers conducting low and high groundwater arsenic. Part I: Comparative hydrochemical and hydrogeological characteristics―by Subhrangsu K. Acharyya. Applied Geochemistry, 2009, 24, 186-187.	3.0	2
207	Reactions at the Mineral-Water Interface. , 1994, , 273-305.		2
208	Solid and aqueous mercury in remote river sediments (Litany River, French Guyana, South America). European Physical Journal Special Topics, 2003, 107, 281-284.	0.2	1
209	Chapter 16 Reactive Transport and Residence Times in Unsaturated Fractured Rocks from Field-Scale Experiments. Developments in Earth and Environmental Sciences, 2007, 7, 441-468.	0.1	1
210	Simulations des interfaces minèral-macromolècule par dynamique moléculaire. Materiaux Et Techniques, 2002, 90, 39-48.	0.9	1
211	Advanced characterizations for stabilization/solidification technologies. , 2022, , 497-516.		1
212	Chapter 5 Prions, Metals, and Soils. Developments in Earth and Environmental Sciences, 2007, , 125-152.	0.1	0
213	Transfer of pollutants in soils, sediments and water systems: From small to large scale. Journal of Hydrology, 2009, 369, 223-224.	5.4	0
214	Fate of pathological prion (PrP ^{sc} 92–138) in soil and water: prion-clay nanoparticle molecular dynamics. Journal of Biomolecular Structure and Dynamics, 2014, 32, 1802-1816.	3.5	0
215	Peer review report 1 on "Geochemical distribution and fate of arsenic in water and sediments of rivers from the Hokusetsu area, Japan― Journal of Hydrology: Regional Studies, 2017, 9, 181.	2.4	0
216	Pollutant Speciation in Water and Related Environmental Treatment Issues. Neutron Scattering Applications and Techniques, 2009, , 491-520.	0.2	0

#	Article	IF	CITATIONS
217	Role of the selenium in articular cartilage metabolism, growth, and maturation. , 2015, , 77-78.		Ο
218	Fate of selenium in soil and engineered suboxic and anoxic environments. , 2015, , 19-20.		0
219	Organic and inorganic pollutant reduction by Fe(II) in groundwater: surface chemical mechanism and AFM observation. , 2020, , 219-220.		Ο
220	Role of Fe(II)/Fe(III) systems in the reductive dehalogenation of TCE in groundwater. , 2020, , 407-408.		0