Ashwag Albukhari

List of Publications by Citations

Source: https://exaly.com/author-pdf/8937691/ashwag-albukhari-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

13
papers529
citations9
h-index18
g-index18
ext. papers727
ext. citations7.1
avg, IF3
L-index

#	Paper	IF	Citations
13	Tumor hypoxia induces nuclear paraspeckle formation through HIF-2Idependent transcriptional activation of NEAT1 leading to cancer cell survival. <i>Oncogene</i> , 2015 , 34, 4482-90	9.2	164
12	Salt-Inducible Kinase 2 Couples Ovarian Cancer Cell Metabolism with Survival at the Adipocyte-Rich Metastatic Niche. <i>Cancer Cell</i> , 2016 , 30, 273-289	24.3	92
11	Unlocking the complexity of hypoxia non-coding transcriptome landscape of breast cancer. <i>BMC Genomics</i> , 2014 , 15,	4.5	78
10	Caffeic acid phenethyl ester protects against tamoxifen-induced hepatotoxicity in rats. <i>Food and Chemical Toxicology</i> , 2009 , 47, 1689-95	4.7	51
9	Serous tubal intraepithelial carcinomas associated with high-grade serous ovarian carcinomas: a systematic review. <i>BJOG: an International Journal of Obstetrics and Gynaecology</i> , 2017 , 124, 872-878	3.7	43
8	Tuning microtubule dynamics to enhance cancer therapy by modulating FER-mediated CRMP2 phosphorylation. <i>Nature Communications</i> , 2018 , 9, 476	17.4	31
7	Thymoquinone-Induced Reactivation of Tumor Suppressor Genes in Cancer Cells Involves Epigenetic Mechanisms. <i>Epigenetics Insights</i> , 2019 , 12, 2516865719839011	3	21
6	Promises and challenges of adoptive T-cell therapies for solid tumours. <i>British Journal of Cancer</i> , 2021 , 124, 1759-1776	8.7	19
5	Ensemble Deep-Learning-Enabled Clinical Decision Support System for Breast Cancer Diagnosis and Classification on Ultrasound Images <i>Biology</i> , 2022 , 11,	4.9	14
4	POSSIBLE REGULATION OF LDL-RECEPTOR BY NARINGENIN IN HEPG2 HEPATOMA CELL LINE. Tropical Journal of Obstetrics and Gynaecology, 2017 , 14, 278-287	0.3	6
3	Mechanistic Drivers of Mllerian Duct Development and Differentiation Into the Oviduct. <i>Frontiers in Cell and Developmental Biology</i> , 2021 , 9, 605301	5.7	4
2	The Oxford Classic Links Epithelial-to-Mesenchymal Transition to Immunosuppression in Poor Prognosis Ovarian Cancers. <i>Clinical Cancer Research</i> , 2021 , 27, 1570-1579	12.9	4
1	Enhancement of Annexin V in response to combination of epigallocatechin gallate and quercetin as a potent arrest the cell cycle of colorectal cancer. <i>Brazilian Journal of Biology</i> , 2021 , 83, e248746	1.5	1