List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8937529/publications.pdf Version: 2024-02-01

		93792	43601
205	11,055	39	95
papers	citations	h-index	g-index
221	221	221	8856
all docs	docs citations	times ranked	citing authors

MADE F ODAZEM

#	Article	IF	CITATIONS
1	Experimental observation of ohmic impedance. Electrochimica Acta, 2022, 413, 140177.	2.6	Ο
2	Impedance Analysis of Electrochemical Systems. Chemical Reviews, 2022, 122, 11131-11168.	23.0	161
3	On the Graphical Analysis of the Impedance Response of Passive Electrodes. ECS Meeting Abstracts, 2022, MA2022-01, 1911-1911.	0.0	0
4	(Digital Presentation) A Mathematical Model for Localized Corrosion of Copper Under a Droplet. ECS Meeting Abstracts, 2022, MA2022-01, 1003-1003.	0.0	0
5	Resistivity of mesopore-confined ionic liquid determined by electrochemical impedance spectroscopy. Electrochimica Acta, 2021, 378, 138112.	2.6	1
6	Impedance Response of a Thin Film on an Electrode: Deciphering the Influence of the Double Layer Capacitance. ChemPhysChem, 2021, 22, 1371-1378.	1.0	13
7	Electrochemical impedance spectroscopy. Nature Reviews Methods Primers, 2021, 1, .	11.8	308
8	The development of advanced mathematical models for continuous glucose sensors. Electrochimica Acta, 2021, 382, 138226.	2.6	1
9	The influence of current and potential distribution on the measurement of dielectric permittivity. Electrochimica Acta, 2021, 391, 138957.	2.6	1
10	Electrochemical impedance spectroscopy study of the passive film for laser-beam-melted 17-4PH stainless steel. Corrosion Science, 2021, 191, 109750.	3.0	15
11	On the rate capability of supercapacitors characterized by a constant-phase element. Journal of Power Sources, 2021, 516, 230700.	4.0	4
12	Influence of Ohmic Impedance on Impedance Spectroscopy. ECS Meeting Abstracts, 2021, MA2021-02, 742-742.	0.0	0
13	(Invited) Process for Continuous Electro-Osmotic Dewatering of Phosphatic Clay Suspensions. ECS Meeting Abstracts, 2021, MA2021-02, 1769-1769.	0.0	0
14	Transient Response of a Continuous Glucose Monitor. ECS Meeting Abstracts, 2021, MA2021-02, 741-741.	0.0	0
15	A Mathematical Model for Localized Corrosion of Copper Under a Droplet. ECS Meeting Abstracts, 2021, MA2021-02, 575-575.	0.0	0
16	Indirect electrochemical impedance spectroscopy for corrosion detection in external post-tensioned tendons: 1. Proof of concept. Corrosion Science, 2020, 164, 108331.	3.0	9
17	Indirect Impedance for Corrosion Detection of External Post-tensioned Tendons: 2. Multiple Steel Strands. Corrosion Science, 2020, 164, 108330.	3.0	6
18	Local electrochemical characteristics of pure iron under a saline droplet II: Local corrosion kinetics. Electrochimica Acta, 2020, 354, 136631.	2.6	3

#	Article	IF	CITATIONS
19	Impedance measurements on QLED devices: analysis of high-frequency loop in terms of material properties. Journal of Solid State Electrochemistry, 2020, 24, 3083-3090.	1.2	6
20	Electrochemical impedance spectroscopy: the journey to physical understanding. Journal of Solid State Electrochemistry, 2020, 24, 2151-2153.	1.2	7
21	A tutorial on electrochemical impedance spectroscopy. ChemTexts, 2020, 6, 1.	1.0	24
22	Local electrochemical characteristics of pure iron under a saline droplet I: Effect of droplet size on electrochemical distribution. Electrochimica Acta, 2020, 354, 136633.	2.6	1
23	Editorial overview: If chemists make chemicals and chemical engineers make money, what do electrochemical engineers do?. Current Opinion in Electrochemistry, 2020, 20, A2-A4.	2.5	2
24	Physical properties obtained from measurement model analysis of impedance measurements. Electrochimica Acta, 2020, 354, 136747.	2.6	39
25	On experimental determination of cell constants for interdigitated electrodes. Electrochimica Acta, 2020, 337, 135732.	2.6	6
26	Application of the Kramers–Kronig Relations to Multi-Sine Electrochemical Impedance Measurements. Journal of the Electrochemical Society, 2020, 167, 020515.	1.3	28
27	Advances and challenges of electrokinetic dewatering of clays and soils. Current Opinion in Electrochemistry, 2020, 22, 17-24.	2.5	11
28	Systematic Model Development for Impedance Response of LiCoO2 C Batteries. ECS Meeting Abstracts, 2020, MA2020-01, 1262-1262.	0.0	0
29	Systematic Model Development for Impedance Response of LiCoO2 C Batteries. ECS Meeting Abstracts, 2020, MA2020-02, 1579-1579.	0.0	Ο
30	Welcome Remarks - F02: Advances in Application and Theory of Electrochemical Impedance Spectroscopy. ECS Meeting Abstracts, 2020, MA2020-02, Open-Open.	0.0	0
31	Resistivity of Mesopore Confined Solvent Free Ionic Liquid Determined By Electrochemical Impedance Spectroscopy. ECS Meeting Abstracts, 2020, MA2020-02, 3754-3754.	0.0	Ο
32	Python-Based Program for Error Structure Analysis and Regression of Impedance Data. ECS Meeting Abstracts, 2020, MA2020-02, 1577-1577.	0.0	1
33	Physical Properties Obtained from Measurement Model Analysis of Impedance Measurements. ECS Meeting Abstracts, 2020, MA2020-02, 1578-1578.	0.0	1
34	From frequency dispersion to ohmic impedance: A new insight on the high-frequency impedance analysis of electrochemical systems. Electrochimica Acta, 2019, 320, 134609.	2.6	35
35	On the impedance response of interdigitated electrodes. Electrochimica Acta, 2019, 327, 135000.	2.6	18
36	Mathematical model and optimization of continuous electro-osmotic dewatering. Electrochimica Acta, 2019, 304, 42-53.	2.6	11

#	Article	IF	CITATIONS
37	Efficient continuous electrokinetic dewatering of phosphatic clay suspensions. Electrochimica Acta, 2019, 298, 134-141.	2.6	9
38	Application of the Kramers-Kronig Relations to Multi-Sine Electrochemical Impedance Spectroscopy. ECS Meeting Abstracts, 2019, , .	0.0	0
39	Mathematical Model and Optimization of Continuous Electro-Osmotic Dewatering. ECS Meeting Abstracts, 2019, , .	0.0	0
40	Behind Modeling Electrochemical Impedance Response of a Continuous Glucose Monitor. ECS Meeting Abstracts, 2019, , .	0.0	0
41	The Influence of Geometry-Induced Frequency Dispersion on the Impedance Response of Interdigitated Electrodes. ECS Meeting Abstracts, 2019, , .	0.0	0
42	(Invited) On Teaching Electrochemical Impedance Spectroscopy. ECS Meeting Abstracts, 2019, , .	0.0	1
43	Ohmic Impedance: Myth or Reality?. ECS Meeting Abstracts, 2019, , .	0.0	0
44	Mathematical model for the electrochemical impedance response of a continuous glucose monitor. Electrochimica Acta, 2018, 275, 119-132.	2.6	14
45	Microstructure of clay fabric in electrokinetic dewatering of phosphatic clay dispersions. Applied Clay Science, 2018, 158, 94-101.	2.6	17
46	EIS Technique in Passivity Studies: Determination of the Dielectric Properties of Passive Films. , 2018, , 93-107.		3
47	Influence of geometry-induced frequency dispersion on the impedance of rectangular electrodes. Electrochimica Acta, 2018, 283, 1820-1828.	2.6	7
48	Progress in the Development of Prototypes for Phosphatic Clay Electrokinetic Dewatering. ECS Meeting Abstracts, 2018, , .	0.0	0
49	A Mathematical Model for Electrochemical Impedance Response of a Continuous Glucose Monitor. ECS Meeting Abstracts, 2018, , .	0.0	0
50	Influence of Geometry-Induced Frequency Dispersion on the Impedance of Ring Electrodes. Electrochimica Acta, 2017, 235, 437-441.	2.6	4
51	On the impedance response of reactions influenced by mass transfer. Russian Journal of Electrochemistry, 2017, 53, 932-940.	0.3	16
52	Determination of water uptake in organic coatings deposited on 2024 aluminium alloy: Comparison between impedance measurements and gravimetry. Progress in Organic Coatings, 2017, 112, 93-100.	1.9	58
53	Application of Impedance Spectroscopy and Surface Analysis to Obtain Oxide Film Thickness. Journal of the Electrochemical Society, 2017, 164, C563-C573.	1.3	39
54	Contribution of Surface Distributions to Constant-Phase-Element (CPE) Behavior: 3. Adsorbed Intermediates. Electrochimica Acta, 2017, 251, 99-108.	2.6	30

#	Article	IF	CITATIONS
55	Improved EIS Analysis of the Electrochemical Behaviour of Carbon Steel in Alkaline Solution. Electrochimica Acta, 2017, 246, 924-930.	2.6	54
56	The Influence of Homogeneous Reactions on the Impedance Response of a Rotating Disk Electrode. Journal of the Electrochemical Society, 2017, 164, E3418-E3428.	1.3	12
57	Indirect Impedance Measurement to Assess Corrosion of Tendons. ECS Meeting Abstracts, 2017, , .	0.0	Ο
58	Impedance-Based Characterization of Raw Materials Used in Electrochemical Manufacturing. ECS Meeting Abstracts, 2017, , .	0.0	0
59	Impedance study of the influence of chromates on the properties of waterborne coatings deposited on 2024 aluminium alloy. Corrosion Science, 2016, 109, 174-181.	3.0	41
60	Identification of Resistivity Distributions in Dielectric Layers by Measurement Model Analysis of Impedance Spectroscopy. Electrochimica Acta, 2016, 219, 312-320.	2.6	38
61	Influence of Micrometric-Scale Electrode Heterogeneity on Electrochemical Impedance Spectroscopy. Electrochimica Acta, 2016, 201, 374-379.	2.6	29
62	Response to "Comment on Nanometer-Scale Corrosion of Copper in De-Aerated Deionized Water―[J. Electrochem. Soc., 161, C107 (2014)]. Journal of the Electrochemical Society, 2016, 163, Y5-Y11.	1.3	6
63	Comparison of different methods for measuring the passive film thickness on metals. Electrochimica Acta, 2016, 201, 340-347.	2.6	140
64	Impedance analysis of ASTM A416 tendon steel corrosion in alkaline simulated pore solutions. Corrosion Science, 2016, 104, 26-35.	3.0	31
65	Contribution of Surface Distributions to Constant-Phase-Element (CPE) Behavior: 2. Capacitance. Electrochimica Acta, 2016, 188, 566-573.	2.6	57
66	Mathematical Models for the Impedance Response of Subcutaneous Glucose Sensors. ECS Meeting Abstracts, 2016, , .	0.0	0
67	(Invited) Electrokinetic Separations to Increase the Percent Solids of the Effluent from a Phosphate Mine. ECS Meeting Abstracts, 2016, , .	0.0	0
68	The Influence of Homogeneous Reactions on the Impedance Response of a Rotating Disk Electrode. ECS Meeting Abstracts, 2016, , .	0.0	0
69	On Interpretation of Constant-Phase Elements. ECS Meeting Abstracts, 2016, , .	0.0	0
70	The Influence of Coupled Faradaic and Charging Currents on Impedance Spectroscopy. ECS Meeting Abstracts, 2016, , .	0.0	0
71	Frequency Dispersion Associated with Surface Heterogeneity of Faradaic Reactions Coupled By an Adsorbed Intermediate. ECS Meeting Abstracts, 2016, , .	0.0	0
72	The Ohmic Impedance Contribution to the Indirect Impedance Measurement. ECS Meeting Abstracts, 2016, , .	0.0	0

#	Article	IF	CITATIONS
73	Impedance analysis of the distributed resistivity of coatings in dry and wet conditions. Electrochimica Acta, 2015, 179, 452-459.	2.6	39
74	The influence of anomalous diffusion on the impedance response of LiCoO2 C batteries. Journal of Power Sources, 2015, 293, 57-64.	4.0	34
75	Contribution of Surface Distributions to Constant-Phase-Element (CPE) Behavior: 1. Influence of Roughness. Electrochimica Acta, 2015, 173, 416-424.	2.6	113
76	Hydrodynamic and Mass Transport Coupled through the Viscosity: Analysis of Steady-State and EHD Impedance. Journal of the Electrochemical Society, 2015, 162, H806-H810.	1.3	1
77	The impedance response of rotating disk electrodes. Journal of Electroanalytical Chemistry, 2015, 737, 11-22.	1.9	8
78	Mathematical Models for Under-Deposit Corrosion. Journal of the Electrochemical Society, 2014, 161, C321-C329.	1.3	28
79	Numerical simulations for cathodic protection of pipelines. , 2014, , 85-126.		6
80	Interpretation of Electrochemical Impedance for Corrosion of a Coated Silver Film in Terms of a Pore-in-Pore Model. Journal of the Electrochemical Society, 2014, 161, C573-C579.	1.3	25
81	Contribution of electrochemical dissolution during pickling of low carbon steel in acidic solutions. Corrosion Science, 2014, 82, 362-368.	3.0	26
82	The Influence of Coupled Faradaic and Charging Currents on Impedance Spectroscopy. Electrochimica Acta, 2014, 131, 3-12.	2.6	35
83	Determination of resistivity profiles in anti-corrosion coatings from constant-phase-element parameters. Progress in Organic Coatings, 2014, 77, 2076-2083.	1.9	46
84	Nanometer-Scale Corrosion of Copper in De-Aerated Deionized Water. Journal of the Electrochemical Society, 2014, 161, C107-C114.	1.3	33
85	Semi-Continuous Electrokinetic Dewatering of Phosphatic Clay Suspensions. Electrochimica Acta, 2014, 140, 438-446.	2.6	15
86	Influence of overcharge and over-discharge on the impedance response of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mrow><mml:msub><mml:mrow><mml:mtext>LiCoO</mml:mtext></mml:mrow><mm batteries. Journal of Power Sources, 2014, 270, 92-100.</mm </mml:msub></mml:mrow></mml:math 	11:mn32 <td>nml:mn></td>	nml:mn>
87	Impedance Based Characterization of Raw Materials Used in Electrochemical Manufacturing. Electrochemical Society Interface, 2014, 23, 63-67.	0.3	1
88	On the Use of the Power-Law Model for Interpreting Constant-Phase-Element Parameters. Journal of the Brazilian Chemical Society, 2014, , .	0.6	3
89	Characterization of Damaged Skin by Impedance Spectroscopy: Chemical Damage by Dimethyl Sulfoxide. Pharmaceutical Research, 2013, 30, 2607-2624.	1.7	21
90	Characterization of Damaged Skin by Impedance Spectroscopy: Mechanical Damage. Pharmaceutical Research, 2013, 30, 2036-2049.	1.7	31

#	Article	IF	CITATIONS
91	Constant-phase-element behavior caused by inhomogeneous water uptake in anti-corrosion coatings. Electrochimica Acta, 2013, 87, 693-700.	2.6	131
92	Dielectric Properties of Materials Showing Constant-Phase-Element (CPE) Impedance Response. Journal of the Electrochemical Society, 2013, 160, C215-C225.	1.3	370
93	Application of Impedance Spectroscopy to Characterize Polymer-Electrolyte-Membrane (PEM) Fuel Cells. ECS Transactions, 2013, 50, 247-260.	0.3	8
94	Mathematical Models for Under-Deposit Corrosion in Aerated Media. ECS Transactions, 2013, 50, 181-196.	0.3	3
95	Single-Frequency LCR Databridge Impedance Measurements as Surrogate Measures for the Integrity of Human Skin. Journal of the Electrochemical Society, 2012, 159, G161-G165.	1.3	2
96	Single-Frequency LCR Databridge Impedance Measurements as Surrogate Measures for the Integrity of Human Skin. ECS Transactions, 2012, 41, 3-14.	0.3	0
97	Influence of normal and radial contributions of local current density on local electrochemical impedance spectroscopy. Electrochimica Acta, 2012, 60, 244-252.	2.6	16
98	Constant-Phase-Element Behavior Caused by Coupled Resistivity and Permittivity Distributions in Films. Journal of the Electrochemical Society, 2011, 158, C424.	1.3	63
99	A critical analysis of single-frequency LCR databridge impedance measurements of human skin. Toxicology in Vitro, 2011, 25, 774-784.	1.1	16
100	On the correlation between single-frequency impedance measurements and human skin permeability to water. Toxicology in Vitro, 2011, 25, 2095-2104.	1.1	25
101	An Interfacial and Bulk Charge Transport Model for Dye-Sensitized Solar Cells Based on Photoanodes Consisting of Core–Shell Nanowire Arrays. Journal of the American Chemical Society, 2011, 133, 18663-18672.	6.6	32
102	A constitutive relationship for electrokinetic dewatering of phosphatic clay slurries. Mining, Metallurgy and Exploration, 2011, 28, 49-54.	0.4	1
103	Electrokinetic dewatering of phosphatic clay settling areas: numerical simulation and economic assessment. Mining, Metallurgy and Exploration, 2011, 28, 71-76.	0.4	1
104	Impedance of blocking electrodes having parallel cylindrical pores with distributed radii. Electrochimica Acta, 2011, 56, 8014-8022.	2.6	31
105	Local electrochemical impedance spectroscopy: A review and some recent developments. Electrochimica Acta, 2011, 56, 8048-8048.	2.6	129
106	Application of complementary analytical tools to support interpretation of polymer-electrolyte-membrane fuel cell impedance data. Journal of Power Sources, 2011, 196, 3736-3742.	4.0	13
107	Corrosion of tungsten microelectrodes used in neural recording applications. Journal of Neuroscience Methods, 2011, 198, 158-171.	1.3	142
108	Determination of effective capacitance and film thickness from constant-phase-element parameters. Electrochimica Acta, 2010, 55, 6218-6227.	2.6	1,695

MARK E ORAZEM

#	Article	IF	CITATIONS
109	The origin of the complex character of the Ohmic impedance. Electrochimica Acta, 2010, 55, 6313-6321.	2.6	32
110	Constant-Phase-Element Behavior Caused by Resistivity Distributions in Films. ECS Transactions, 2010, 28, 77-94.	0.3	9
111	Constant-Phase-Element Behavior Caused by Resistivity Distributions in Films. Journal of the Electrochemical Society, 2010, 157, C458.	1.3	295
112	Constant-Phase-Element Behavior Caused by Resistivity Distributions in Films. Journal of the Electrochemical Society, 2010, 157, C452.	1.3	387
113	Graphical Estimation of Interfacial Capacitance of PEM Fuel Cells from Impedance Measurements. Journal of the Electrochemical Society, 2009, 156, B203.	1.3	23
114	On the Sensitivity of the Kramers–Kronig Relations to Nonlinear Effects in Impedance Measurements. Journal of the Electrochemical Society, 2009, 156, C345.	1.3	36
115	Impedance of a Disk Electrode with Reactions Involving an Adsorbed Intermediate: Experimental and Simulation Analysis. Journal of the Electrochemical Society, 2009, 156, C214.	1.3	24
116	The Influence of Nonuniform Current and Potential Distributions on the Impedance Response of a Disk Electrode. ECS Transactions, 2009, 16, 91-110.	0.3	2
117	On the extension of CP models to address cathodic protection under a delaminated coating. Corrosion Science, 2009, 51, 962-970.	3.0	19
118	Impedance of a Disk Electrode with Reactions Involving an Adsorbed Intermediate: Local and Global Analysis. Journal of the Electrochemical Society, 2009, 156, C28.	1.3	29
119	Applications of Potential Theory in Cathodic Protection. ECS Transactions, 2009, 16, 47-57.	0.3	3
120	An integrated approach to electrochemical impedance spectroscopy. Electrochimica Acta, 2008, 53, 7360-7366.	2.6	90
121	Analysis of flooding as a stochastic process in polymer electrolyte membrane (PEM) fuel cells by impedance techniques. Journal of Power Sources, 2008, 184, 212-219.	4.0	53
122	Local electrochemical impedance spectroscopy: Considerations about the cell geometry. Electrochimica Acta, 2008, 53, 7386-7395.	2.6	58
123	On Selection of the Perturbation Amplitude Required to Avoid Nonlinear Effects in Impedance Measurements. Israel Journal of Chemistry, 2008, 48, 133-142.	1.0	39
124	Impedance of a Disk Electrode with Reactions Involving an Adsorbed Intermediate: Local and Global Analysis. ECS Transactions, 2008, 13, 19-42.	0.3	0
125	Modeling of Electrochemical Impedance Data of a Magnesium-Rich Primer. Journal of the Electrochemical Society, 2008, 155, E143.	1.3	15
126	Guidelines for Evaluation of Error Structure for Impedance Response of Polymer Electrolyte Membrane (PEM) Fuel Cells. ECS Transactions, 2008, 13, 153-169.	0.3	5

#	Article	IF	CITATIONS
127	A Mathematical Model for Cathodic Delamination of Coated Metal Including a Kinetic pH–Porosity Relationship. Journal of the Electrochemical Society, 2008, 155, C279.	1.3	20
128	Effect of Large Perturbation Amplitudes on the Impedance Response of an Electrochemical System. ECS Transactions, 2008, 13, 81-100.	0.3	6
129	The Apparent Constant-Phase-Element Behavior of a Disk Electrode with Faradaic Reactions. Journal of the Electrochemical Society, 2007, 154, C99.	1.3	152
130	Experimental Issues Associated with Measurement of Local Electrochemical Impedance. Journal of the Electrochemical Society, 2007, 154, C719.	1.3	46
131	Interpretation of Low-Frequency Inductive Loops in PEM Fuel Cells. Journal of the Electrochemical Society, 2007, 154, B1378.	1.3	108
132	The Global and Local Impedance Response of a Blocking Disk Electrode with Local Constant-Phase-Element Behavior. Journal of the Electrochemical Society, 2007, 154, C89.	1.3	96
133	Error Analysis of the Impedance Response of PEM Fuel Cells. Journal of the Electrochemical Society, 2007, 154, B883.	1.3	36
134	Stochastic Analysis of Flooding in PEM Fuel Cells by Electrochemical Impedance Spectroscopy. ECS Transactions, 2007, 11, 485-495.	0.3	5
135	Mathematical model for cathodic delamination using a porosity–pH relationship. Corrosion Science, 2007, 49, 3638-3658.	3.0	25
136	The Apparent Constant-Phase-Element Behavior of an Ideally Polarized Blocking Electrode. Journal of the Electrochemical Society, 2007, 154, C81.	1.3	124
137	Local Electrochemical Impedance Spectroscopy: Theoretical and Experimental Considerations on Measurable Quantities. ECS Meeting Abstracts, 2007, , .	0.0	Ο
138	Enhanced Graphical Representation of Electrochemical Impedance Data. Journal of the Electrochemical Society, 2006, 153, B129.	1.3	386
139	The Apparent CPE Behavior of a Disk Electrode with Faradaic Reactions. ECS Meeting Abstracts, 2006, , .	0.0	2
140	Impedance of steels in new and degraded ester based lubricating oil. Electrochimica Acta, 2006, 51, 1497-1504.	2.6	21
141	CPE analysis by local electrochemical impedance spectroscopy. Electrochimica Acta, 2006, 51, 1473-1479.	2.6	1,294
142	Impedance analysis for reduction of ferricyanide on a submerged hemispherical Ni270 electrode. Electrochimica Acta, 2006, 51, 1514-1523.	2.6	6
143	Deterministic Impedance Models for Interpretation of Low-Frequency Inductive Loops in PEM Fuel Cells. ECS Transactions, 2006, 3, 1031-1040.	0.3	10
144	The Apparent CPE Behavior of a Disk Electrode with Faradaic Reactions: A Global and Local Impedance Analysis. ECS Transactions, 2006, 3, 567-585.	0.3	3

#	Article	IF	CITATIONS
145	Evaluation of Time Constants Governing the Cathodic Reaction in SOFCs. ECS Transactions, 2006, 1, 243-253.	0.3	1
146	A mathematical model for the cathodic protection of tank bottoms. Corrosion Science, 2005, 47, 849-868.	3.0	37
147	Assessment of Pipeline Condition Using Heterogeneous Input Data. Journal of the Electrochemical Society, 2004, 151, B415.	1.3	2
148	Hydrodynamics and mass-transfer-limited current distribution for a submerged stationary hemispherical electrode under jet impingement. Electrochimica Acta, 2004, 49, 2901-2908.	2.6	9
149	A systematic approach toward error structure identification for impedance spectroscopy. Journal of Electroanalytical Chemistry, 2004, 572, 317-327.	1.9	59
150	Validation of the measurement model concept for error structure identification. Electrochimica Acta, 2004, 49, 2881-2889.	2.6	29
151	A weighted nonlinear regression-based inverse model for interpretation of pipeline survey data. Electrochimica Acta, 2004, 49, 3965-3975.	2.6	5
152	On the Error Structure of Impedance Measurements. Journal of the Electrochemical Society, 2003, 150, E491.	1.3	9
153	On the Error Structure of Impedance Measurements. Journal of the Electrochemical Society, 2003, 150, E501.	1.3	9
154	On the Error Structure of Impedance Measurements. Journal of the Electrochemical Society, 2003, 150, E477.	1.3	24
155	Extension of the measurement model approach for deconvolution of underlying distributions for impedance measurements. Electrochimica Acta, 2002, 47, 2027-2034.	2.6	102
156	Application of a submerged impinging jet for corrosion studies: development of models for the impedance response. Electrochimica Acta, 2001, 46, 3685-3698.	2.6	17
157	Application of Boundary Element Models to Predict Effectiveness of Coupons for Accessing Cathodic Protection of Buried Structures. Corrosion, 2000, 56, 794-800.	0.5	25
158	A Mathematical Model for the Radially Dependent Impedance of a Rotating Disk Electrode. Journal of the Electrochemical Society, 1999, 146, 2199-2208.	1.3	25
159	Effect of cations on the diffusivity of the charge carriers in polyaniline membranes. Electrochimica Acta, 1999, 44, 2087-2093.	2.6	23
160	Modeling of the cast iron/drinking water system by electrochemical impedance spectroscopy. Electrochimica Acta, 1999, 44, 4345-4356.	2.6	66
161	Influence of surface phenomena on the impedance response of a rotating disk electrode. Electrochimica Acta, 1999, 44, 4403-4412.	2.6	18
162	Current Distribution on a Rotating Disk Electrode below the Massâ€Transferâ€Limited Current: Correction for Finite Schmidt Number and Determination of Surface Charge Distribution. Journal of the Electrochemical Society, 1998, 145, 1940-1949.	1.3	11

#	Article	IF	CITATIONS
163	Variable-Amplitude Galvanostatically Modulated Impedance Spectroscopy as a Tool for Assessing Reactivity at the Corrosion Potential Without Distorting Temporal Evolution of the System. Corrosion, 1998, 54, 289-298.	0.5	14
164	Spectroscopy Applications of the Kramersâ€Kronig Transforms: Implications for Error Structure Identification. Journal of the Electrochemical Society, 1997, 144, 48-55.	1.3	13
165	Mathematical Models for Cathodic Protection of an Underground Pipeline with Coating Holidays: Part 2 — Case Studies of Parallel Anode Cathodic Protection Systems. Corrosion, 1997, 53, 427-436.	0.5	44
166	Application of Measurement Models to Electrohydrodynamic Impedance Spectroscopy. Journal of the Electrochemical Society, 1996, 143, 948-960.	1.3	26
167	Thermally Stimulated Deepâ€Level Impedance Spectroscopy: Application to an nâ€GaAs Schottky Diode. Journal of the Electrochemical Society, 1996, 143, 4066-4074.	1.3	16
168	Optically Stimulated Deepâ€Level Impedance Spectroscopy: Application to an nâ€GaAs Schottky Diode. Journal of the Electrochemical Society, 1996, 143, 4074-4079.	1.3	4
169	A method for maintaining a constant potential variation during galvanostatic regulation of electrochemical impedance measurements. Electrochimica Acta, 1996, 41, 977-983.	2.6	25
170	The influence of error structure on interpretation of impedance spectra. Electrochimica Acta, 1996, 41, 1017-1022.	2.6	19
171	The Error Structure of Impedance Spectra for Systems with a Large Ohmic Resistance with Respect to the Polarization Impedance. Journal of the Electrochemical Society, 1996, 143, 3880-3890.	1.3	31
172	Application of Measurement Models to Impedance Spectroscopy: II . Determination of the Stochastic Contribution to the Error Structure. Journal of the Electrochemical Society, 1995, 142, 4149-4158.	1.3	126
173	Application of Measurement Models to Impedance Spectroscopy: III . Evaluation of Consistency with the Kramersâ€Kronig Relations. Journal of the Electrochemical Society, 1995, 142, 4159-4168.	1.3	196
174	Critical issues associated with interpretation of impedance spectra. Journal of Electroanalytical Chemistry, 1994, 378, 51-62.	1.9	53
175	Development of physico-chemical models for electrochemical impedance spectroscopy. Electrochimica Acta, 1993, 38, 1903-1911.	2.6	45
176	Application of Measurement Models for Analysis of Impedance Spectra. Corrosion, 1993, 49, 278-289.	0.5	20
177	Current and Potential Distribution on a Coated Pipeline with Holidays Part I—Model and Experimental Verification. Corrosion, 1993, 49, 199-210.	0.5	35
178	Current and Potential Distribution on a Coated Pipeline with Holidays Part II—Comparison of the Effects of Discrete and Distributed Holidays. Corrosion, 1993, 49, 211-219.	0.5	25
179	A Mathematical Model for the Influence of Deepâ€Level Electronic States on Photoelectrochemical Impedance Spectroscopy: II . Assessment of Characterization Methods Based on Mottâ€Schottky Theory. Journal of the Electrochemical Society, 1992, 139, 127-131.	1.3	16
180	A Mathematical Model for the Influence of Deepâ€Level Electronic States on Photoelectrochemical Impedance Spectroscopy: I . Theoretical Development. Journal of the Electrochemical Society, 1992, 139, 118-126.	1.3	17

#	Article	IF	CITATIONS
181	Identification of Deepâ€Level States in Electronic Materials by Optically Stimulated Deep Level Impedance Spectroscopy. Journal of the Electrochemical Society, 1992, 139, 1463-1469.	1.3	3
182	Measurement Models for Electrochemical Impedance Spectroscopy: I . Demonstration of Applicability. Journal of the Electrochemical Society, 1992, 139, 1917-1927.	1.3	285
183	Practical Applications of the Kramers-Kronig Relations. Corrosion, 1991, 47, 248-259.	0.5	34
184	Numerical study of the influence of reactor design on MOCVD with a comparison to experimental data. Journal of Crystal Growth, 1991, 112, 316-336.	0.7	29
185	On the Application of the Kramersâ€Kronig Relations to Evaluate the Consistency of Electrochemical Impedance Data. Journal of the Electrochemical Society, 1991, 138, 67-76.	1.3	89
186	The Impinging Jet Electrode: Measurement of the Hydrodynamic Constant and Its Use for Evaluating Film Persistency. Corrosion, 1990, 46, 896-901.	0.5	19
187	A mathematical model for the AC impedance of semiconducting electrodes. AICHE Journal, 1988, 34, 465-473.	1.8	9
188	The influence of axial diffusion on convective heat and mass transfer in a horizontal CVD reactor. Journal of Crystal Growth, 1988, 92, 294-310.	0.7	14
189	The Influence of Small Machining Errors on the Primary Current Distribution at a Recessed Electrode. Journal of the Electrochemical Society, 1988, 135, 2524-2530.	1.3	15
190	THE INFLUENCE OF ELECTROLYTIC MASS TRANSFER ON THE PERFORMANCE OF PHOTOELECTROCHEMICAL CELLS. Chemical Engineering Communications, 1987, 57, 335-349.	1.5	2
191	The Distribution of Current and Formation of a Salt Film on an Iron Disk below the Passivation Potential. Journal of the Electrochemical Society, 1987, 134, 392-399.	1.3	29
192	A Mathematical Model for the Corrosion of Iron in Sulfuric Acid. Journal of the Electrochemical Society, 1987, 134, 1357-1366.	1.3	11
193	Electron and hole transport in degenerate semiconductors. AICHE Journal, 1986, 32, 765-772.	1.8	4
194	An improved analysis of the potential drop method for measuring crack lengths in compact tension specimens. International Journal of Fracture, 1986, 31, 245-258.	1.1	8
195	Activity Coefficients of Electrons and Holes in Semiconductors with a Parabolic Density of States. Journal of the Electrochemical Society, 1986, 133, 2081-2086.	1.3	6
196	Photoelectrochemical Devices for Solar Energy Conversion. Reviews of Physiology, Biochemistry and Pharmacology, 1986, , 61-112.	0.9	3
197	Calculation of the Electrical Resistance of a Compact Tension Specimen for Crackâ€Propagation Measurements. Journal of the Electrochemical Society, 1985, 132, 2071-2076.	1.3	4
198	Mathematical Modeling of Liquidâ€Junction Photovoltaic Cells: III . Optimization of Cell Configurations. Journal of the Electrochemical Society, 1984, 131, 2582-2588.	1.3	9

#	Article	IF	CITATIONS
199	Mathematical Modeling of Liquidâ€Junction Photovoltaic Cells: II . Effect of System Parameters on Currentâ€Potential Curves. Journal of the Electrochemical Society, 1984, 131, 2574-2582.	1.3	6
200	Mathematical Modeling of Liquidâ€Junction Photovoltaic Cells: I . Governing Equations. Journal of the Electrochemical Society, 1984, 131, 2569-2574.	1.3	21
201	Primary Current Distribution and Resistance of a Slottedâ€Electrode Cell. Journal of the Electrochemical Society, 1984, 131, 2857-2861.	1.3	19
202	Activity Coefficients of Electrons and Holes in Semiconductors. Journal of the Electrochemical Society, 1984, 131, 2715-2717.	1.3	7
203	CHARACTERIZATION OF TWO-DIRECTIONAL DISPERSED PHASE FLOW THROUGH TIME SERIES ANALYSIS. Chemical Engineering Communications, 1980, 6, 161-173.	1.5	0
204	Oxygen-transfer rates and efficiencies in one- and two-stage airlift towers. Biotechnology and Bioengineering, 1979, 21, 69-88.	1.7	48
205	Bubble flow in the downflow section of an airlift tower. Biotechnology and Bioengineering, 1979, 21, 1579-1606.	1.7	21