## **Carlos F Lopez**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8937516/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                        | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Thunor: visualization and analysis of high-throughput dose–response datasets. Nucleic Acids<br>Research, 2021, 49, W633-W640.                                                                                  | 6.5 | 4         |
| 2  | Unsupervised logic-based mechanism inference for network-driven biological processes. PLoS<br>Computational Biology, 2021, 17, e1009035.                                                                       | 1.5 | 4         |
| 3  | Selective Inhibition of JAK1 Primes STAT5-Driven Human Leukemia Cells for ATRA-Induced Differentiation. Targeted Oncology, 2021, 16, 663-674.                                                                  | 1.7 | 2         |
| 4  | MuSyC is a consensus framework that unifies multi-drug synergy metrics for combinatorial drug discovery. Nature Communications, 2021, 12, 4607.                                                                | 5.8 | 50        |
| 5  | Programmatic modeling for biological systems. Current Opinion in Systems Biology, 2021, 27, 100343.                                                                                                            | 1.3 | 3         |
| 6  | Interactive Multiresolution Visualization of Cellular Network Processes. IScience, 2020, 23, 100748.                                                                                                           | 1.9 | 8         |
| 7  | ACDC: Automated Cell Detection and Counting for Time-Lapse Fluorescence Microscopy. Applied Sciences (Switzerland), 2020, 10, 6187.                                                                            | 1.3 | 9         |
| 8  | A Probabilistic Approach to Explore Signal Execution Mechanisms With Limited Experimental Data.<br>Frontiers in Genetics, 2020, 11, 686.                                                                       | 1.1 | 9         |
| 9  | Charting the Fragmented Landscape of Drug Synergy. Trends in Pharmacological Sciences, 2020, 41, 266-280.                                                                                                      | 4.0 | 56        |
| 10 | Signal integration and information transfer in an allosterically regulated network. Npj Systems<br>Biology and Applications, 2019, 5, 23.                                                                      | 1.4 | 11        |
| 11 | Cardiolipin-Dependent Properties of Model Mitochondrial Membranes from Molecular Simulations.<br>Biophysical Journal, 2019, 117, 429-444.                                                                      | 0.2 | 36        |
| 12 | Systems-level network modeling of Small Cell Lung Cancer subtypes identifies master regulators and destabilizers. PLoS Computational Biology, 2019, 15, e1007343.                                              | 1.5 | 77        |
| 13 | Arrestin-3 scaffolding of the JNK3 cascade suggests a mechanism for signal amplification. Proceedings<br>of the National Academy of Sciences of the United States of America, 2019, 116, 810-815.              | 3.3 | 34        |
| 14 | PyDREAM: high-dimensional parameter inference for biological models in python. Bioinformatics, 2018, 34, 695-697.                                                                                              | 1.8 | 60        |
| 15 | Integrated, High-Throughput, Multiomics Platform Enables Data-Driven Construction of Cellular<br>Responses and Reveals Global Drug Mechanisms of Action. Journal of Proteome Research, 2017, 16,<br>1364-1375. | 1.8 | 34        |
| 16 | GPU-powered model analysis with PySB/cupSODA. Bioinformatics, 2017, 33, 3492-3494.                                                                                                                             | 1.8 | 17        |
| 17 | Activated Oncogenic Pathway Modifies Iron Network in Breast Epithelial Cells: A Dynamic Modeling Perspective. PLoS Computational Biology, 2017, 13, e1005352.                                                  | 1.5 | 22        |
| 18 | An unbiased metric of antiproliferative drug effect in vitro. Nature Methods, 2016, 13, 497-500.                                                                                                               | 9.0 | 92        |

CARLOS F LOPEZ

| #  | Article                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | CASP11 – An Evaluation of a Modular BCL::Fold-Based Protein Structure Prediction Pipeline. PLoS ONE, 2016, 11, e0152517.                                                                                        | 1.1 | 13        |
| 20 | Competition and allostery govern substrate selectivity of cyclooxygenase-2. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 12366-12371.                            | 3.3 | 24        |
| 21 | Ruleâ€based modeling: a computational approach for studying biomolecular site dynamics in cell<br>signaling systems. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2014, 6, 13-36.             | 6.6 | 97        |
| 22 | Programming biological models in Python using PySB. Molecular Systems Biology, 2013, 9, 646.                                                                                                                    | 3.2 | 216       |
| 23 | A Programmatic Modeling Approach to Explore Alternative Hypothesis of Mitochondrial Regulation in<br>Extrinsic Apoptosis Signaling. Biophysical Journal, 2013, 104, 493a-494a.                                  | 0.2 | Ο         |
| 24 | Understanding and Tracking Pro- and Anti-Apoptotic BCL-2 protein Interactions and their Relation to<br>Cancer in Extrinsic Apoptosis. Biophysical Journal, 2011, 100, 164a-165a.                                | 0.2 | 1         |
| 25 | Modeling Extrinsic Apoptosis Regulatory Network Pathways Using A Rules-based Framework.<br>Biophysical Journal, 2009, 96, 304a.                                                                                 | 0.2 | Ο         |
| 26 | Mechanistic Elements of Protein Cold Denaturation. Journal of Physical Chemistry B, 2008, 112, 5961-5967.                                                                                                       | 1.2 | 104       |
| 27 | Hydrophobicity of protein surfaces: Separating geometry from chemistry. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 2274-2279.                                  | 3.3 | 242       |
| 28 | Probing Membrane Insertion Activity of Antimicrobial Polymers via Coarse-Grain Molecular Dynamics.<br>Journal of Chemical Theory and Computation, 2006, 2, 649-655.                                             | 2.3 | 52        |
| 29 | Modeling Surfactant Adsorption on Hydrophobic Surfaces. Physical Review Letters, 2005, 94, 228301.                                                                                                              | 2.9 | 33        |
| 30 | Structure and Dynamics of Model Pore Insertion into a Membrane. Biophysical Journal, 2005, 88, 3083-3094.                                                                                                       | 0.2 | 60        |
| 31 | Understanding nature's design for a nanosyringe. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 4431-4434.                                                         | 3.3 | 280       |
| 32 | Membrane Bound Hydraphiles Facilitate Cation Translocation. Journal of Physical Chemistry B, 2004, 108, 4231-4235.                                                                                              | 1.2 | 17        |
| 33 | Hydrogen Bonding Structure and Dynamics of Water at the Dimyristoylphosphatidylcholine Lipid<br>Bilayer Surface from a Molecular Dynamics Simulation. Journal of Physical Chemistry B, 2004, 108,<br>6603-6610. | 1.2 | 157       |
| 34 | Coarse grain models and the computer simulation of soft materials. Journal of Physics Condensed Matter, 2004, 16, R481-R512.                                                                                    | 0.7 | 359       |
| 35 | Transmembrane Peptide-Induced Lipid Sorting and Mechanism of Lα-to-Inverted Phase Transition Using<br>Coarse-Grain Molecular Dynamics. Biophysical Journal, 2004, 87, 2107-2115.                                | 0.2 | 53        |
| 36 | A coarse grain model for n-alkanes parameterized from surface tension data. Journal of Chemical Physics, 2003, 119, 7043-7049.                                                                                  | 1.2 | 121       |

CARLOS F LOPEZ

| #  | Article                                                                                                                                                                                                                | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Molecular Dynamics Investigations of Lipid Langmuir Monolayers Using a Coarse-Grain Model. Journal of Physical Chemistry B, 2003, 107, 13911-13917.                                                                    | 1.2 | 56        |
| 38 | Self-assembly of a phospholipid Langmuir monolayer using coarse-grained molecular dynamics simulations. Journal of Physics Condensed Matter, 2002, 14, 9431-9444.                                                      | 0.7 | 31        |
| 39 | Molecular Dynamics Investigation of Membrane-Bound Bundles of the Channel-Forming<br>Transmembrane Domain of Viral Protein U from the Human Immunodeficiency Virus HIV-1. Biophysical<br>Journal, 2002, 83, 1259-1267. | 0.2 | 52        |
| 40 | Computer simulation studies of biomembranes using a coarse grain model. Computer Physics Communications, 2002, 147, 1-6.                                                                                               | 3.0 | 94        |
| 41 | Dynamical Properties of a Hydrated Lipid Bilayer from a Multinanosecond Molecular Dynamics<br>Simulation. Biophysical Journal, 2001, 81, 2484-2494.                                                                    | 0.2 | 134       |