
Eduardo Garcia-Verdugo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/893711/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthesis of benzimidazoles in high-temperature waterThis work was presented at the Green Solvents for Catalysis Meeting held in Bruchsal, Germany, 13–16th October 2002.Electronic supplementary information (ESI) available: analytical data for compounds 3a–f and 5g–j. See http://www.rsc.org/suppdata/gc/b2/b212394k/. Green Chemistry, 2003, 5, 187-192.	9.0	161
2	Bioreactors Based on Monolith-Supported Ionic Liquid Phase for Enzyme Catalysis in Supercritical Carbon Dioxide. Advanced Synthesis and Catalysis, 2007, 349, 1077-1084.	4.3	128
3	Bis(oxazoline)copper Complexes Covalently Bonded to Insoluble Support as Catalysts in Cyclopropanation Reactions. Journal of Organic Chemistry, 2001, 66, 8893-8901.	3.2	123
4	Chiral catalysts immobilized on achiral polymers: effect of the polymer support on the performance of the catalyst. Chemical Society Reviews, 2018, 47, 2722-2771.	38.1	120
5	Polymer-Supported Bis(oxazoline)â^Copper Complexes as Catalysts in Cyclopropanation Reactions. Organic Letters, 2000, 2, 3905-3908.	4.6	109
6	Pd catalysts immobilized onto gel-supported ionic liquid-like phases (g-SILLPs): A remarkable effect of the support. Journal of Catalysis, 2010, 269, 150-160.	6.2	107
7	lonic liquids and continuous flow processes: a good marriage to design sustainable processes. Green Chemistry, 2015, 17, 2693-2713.	9.0	98
8	Pd(0) supported onto monolithic polymers containing IL-like moieties. Continuous flow catalysis for the Heck reaction in near-critical EtOH. Chemical Communications, 2006, , 3095.	4.1	88
9	Base supported ionic liquid-like phases as catalysts for the batch and continuous-flow Henry reaction. Green Chemistry, 2008, 10, 401.	9.0	83
10	Polymerâ€Supported Ionicâ€Liquidâ€Like Phases (SILLPs): Transferring Ionic Liquid Properties to Polymeric Matrices. Chemistry - A European Journal, 2011, 17, 1894-1906.	3.3	83
11	Pybox Monolithic Miniflow Reactors for Continuous Asymmetric Cyclopropanation Reaction under Conventional and Supercritical Conditions. Journal of Organic Chemistry, 2007, 72, 4344-4350.	3.2	77
12	Polymer supported ionic liquid phases (SILPs) versus ionic liquids (ILs): How much do they look alike. Chemical Communications, 2007, , 3086-3088.	4.1	74
13	Palladium N-methylimidazolium supported complexes as efficient catalysts for the Heck reaction. Tetrahedron Letters, 2006, 47, 2311-2314.	1.4	72
14	The First Immobilization of Pyridine-bis(oxazoline) Chiral Ligands. Organic Letters, 2002, 4, 3927-3930.	4.6	67
15	Sponge-like ionic liquids: a new platform for green biocatalytic chemical processes. Green Chemistry, 2015, 17, 3706-3717.	9.0	67
16	Selective partial oxidation in supercritical water: the continuous generation of terephthalic acid from para-xylene in high yield. Green Chemistry, 2002, 4, 235-238.	9.0	64
17	New Supported β-Amino Alcohols as Efficient Catalysts for the Enantioselective Addition of Diethylzinc to Benzaldehyde under Flow Conditions. Organic Letters, 2002, 4, 3947-3950.	4.6	64
18	Immobilised Lipase on Structured Supports Containing Covalently Attached Ionic Liquids for the	6.8	64

#	Article	IF	CITATIONS
19	Supercritical Synthesis of Biodiesel. Molecules, 2012, 17, 8696-8719.	3.8	63
20	Tuneable 3D printed bioreactors for transaminations under continuous-flow. Green Chemistry, 2017, 19, 5345-5349.	9.0	63
21	Supported Ionic Liquid-Like Phases (SILLPs) for enzymatic processes: Continuous KR and DKR in SILLP–scCO2 systems. Green Chemistry, 2010, 12, 1803.	9.0	60
22	Supported chiral catalysts: the role of the polymeric network. Reactive and Functional Polymers, 2001, 48, 25-35.	4.1	56
23	Hydrolysis of triacetin catalyzed by immobilized lipases: Effect of the immobilization protocol and experimental conditions on diacetin yield. Enzyme and Microbial Technology, 2011, 48, 510-517.	3.2	56
24	Bisoxazoline-functionalised enantioselective monolithic mini-flow-reactors: development of efficient processes from batch to flow conditions. Green Chemistry, 2007, 9, 1091.	9.0	55
25	Synthesis of Chiral Room Temperature Ionic Liquids from Amino Acids – Application in Chiral Molecular Recognition. European Journal of Organic Chemistry, 2012, 2012, 4996-5009.	2.4	55
26	lonic liquids as an enabling tool to integrate reaction and separation processes. Green Chemistry, 2019, 21, 6527-6544.	9.0	55
27	Functional monolithic resins for the development of enantioselective versatile catalytic minireactors with long-term stability: TADDOL supported systems. Green Chemistry, 2006, 8, 717-726.	9.0	54
28	Efficient enhancement of copper-pyridineoxazoline catalysts through immobilization and process design. Green Chemistry, 2011, 13, 983.	9.0	54
29	The use of NIR-FT-Raman spectroscopy for the characterization of polymer-supported reagents and catalysts. Tetrahedron, 2001, 57, 8675-8683.	1.9	53
30	Nickel complexes from α-amino amides as efficient catalysts for the enantioselective Et2Zn addition to benzaldehyde. Tetrahedron Letters, 2003, 44, 6891-6894.	1.4	53
31	Supported ionic liquid-like phases as organocatalysts for the solvent-free cyanosilylation of carbonyl compounds: from batch to continuous flow process. Green Chemistry, 2014, 16, 1639.	9.0	51
32	Polymer Cocktail: A Multitask Supported Ionic Liquid‣ike Species to Facilitate Multiple and Consecutive Ci£¿C Coupling Reactions. Advanced Synthesis and Catalysis, 2010, 352, 3013-3021.	4.3	50
33	From Salts to Ionic Liquids by Systematic Structural Modifications: A Rational Approach Towards the Efficient Modular Synthesis of Enantiopure Imidazolium Salts. Chemistry - A European Journal, 2010, 16, 836-847.	3.3	49
34	In situ generation of hydrogen for continuous hydrogenation reactions in high temperature water. Green Chemistry, 2006, 8, 359.	9.0	46
35	Structural Diversity in the Selfâ€Assembly of Pseudopeptidic Macrocycles. Chemistry - A European Journal, 2010, 16, 1246-1255.	3.3	46
36	Is it Possible to Achieve Highly Selective Oxidations in Supercritical Water? Aerobic Oxidation of Methylaromatic Compounds. Advanced Synthesis and Catalysis, 2004, 346, 307-316.	4.3	44

#	Article	IF	CITATIONS
37	Advantages of Heterofunctional Octyl Supports: Production of 1,2-Dibutyrin by Specific and Selective Hydrolysis of Tributyrin Catalyzed by Immobilized Lipases. ChemistrySelect, 2016, 1, 3259-3270.	1.5	44
38	Polymer immobilization of bis(oxazoline) ligands using dendrimers as cross-linkers. Tetrahedron: Asymmetry, 2003, 14, 773-778.	1.8	43
39	On-line monitoring of the hydrolysis of acetonitrile in near-critical water using Raman spectroscopy. Vibrational Spectroscopy, 2004, 35, 103-109.	2.2	39
40	Catalytic selective partial oxidations using O2 in supercritical water: the continuous synthesis of carboxylic acids. Green Chemistry, 2007, 9, 1238.	9.0	38
41	Active biopolymers in green non-conventional media: a sustainable tool for developing clean chemical processes. Chemical Communications, 2015, 51, 17361-17374.	4.1	37
42	Highly selective biocatalytic synthesis of monoacylglycerides in sponge-like ionic liquids. Green Chemistry, 2017, 19, 390-396.	9.0	37
43	Title is missing!. Topics in Catalysis, 2000, 13, 303-309.	2.8	36
44	Simultaneous continuous partial oxidation of mixed xylenes in supercritical water. Green Chemistry, 2005, 7, 294.	9.0	36
45	Polymerisation vs. grafting in the preparation of polymer-supported aluminium catalysts for the Diels-Alder reaction: The role of the polymeric backbone. Tetrahedron, 1999, 55, 12897-12906.	1.9	34
46	Green biocatalytic synthesis of biodiesel from microalgae in one-pot systems based on sponge-like ionic liquids. Catalysis Today, 2020, 346, 87-92.	4.4	34
47	Polymer-Supported Bis(oxazolines) and Related Systems:Â Toward New Heterogeneous Enantioselective Catalysts. Industrial & Engineering Chemistry Research, 2005, 44, 8580-8587.	3.7	33
48	Preparation of polymer-supported gold nanoparticles based on resins containing ionic liquid-like fragments: easy control of size and stability. Physical Chemistry Chemical Physics, 2011, 13, 14831.	2.8	33
49	Supported N-heterocyclic carbene rhodium complexes as highly selective hydroformylation catalysts. Journal of Molecular Catalysis A, 2009, 309, 131-136.	4.8	32
50	Efficient and selective chemical transformations under flow conditions: The combination of supported catalysts and supercritical fluids. Beilstein Journal of Organic Chemistry, 2011, 7, 1347-1359.	2.2	32
51	Polymer-supported Pd–NHC complexes: Strategies for the development of multifunctional systems. Catalysis Today, 2012, 196, 137-147.	4.4	31
52	Tuning lipase B from Candida antarctica C–C bond promiscuous activity by immobilization on poly-styrene-divinylbenzene beads. RSC Advances, 2014, 4, 6219.	3.6	31
53	Clean Enzymatic Preparation of Oxygenated Biofuels from Vegetable and Waste Cooking Oils by Using Spongelike Ionic Liquids Technology. ACS Sustainable Chemistry and Engineering, 2016, 4, 6125-6132.	6.7	30
54	The continuous synthesis of ε-caprolactam from 6-aminocapronitrile in high-temperature water. Green Chemistry, 2008, 10, 98-103.	9.0	29

#	Article	IF	CITATIONS
55	Selective synthesis of partial glycerides of conjugated linoleic acids via modulation of the catalytic properties of lipases by immobilization on different supports. Food Chemistry, 2018, 245, 39-46.	8.2	29
56	Stereoselective Chemoenzymatic Synthesis of Enantiopure 2-(1 <i>H</i> -imidazol-yl)cycloalkanols under Continuous Flow Conditions. ACS Catalysis, 2012, 2, 1976-1983.	11.2	28
57	Gold nanoparticles immobilized onto supported ionic liquid-like phases for microwave phenylethanol oxidation in water. Catalysis Today, 2015, 255, 97-101.	4.4	28
58	Conductive films based on composite polymers containing ionic liquids absorbed on crosslinked polymeric ionic-like liquids (SILLPs). Polymer, 2015, 72, 69-81.	3.8	28
59	(Bio)Catalytic Continuous Flow Processes in scCO2 and/or ILs: Towards Sustainable (Bio)Catalytic Synthetic Platforms. Current Organic Synthesis, 2011, 8, 810-823.	1.3	28
60	Improvement of ligand economy controlled by polymer morphology: The case of polymer-Supported bis(oxazoline) catalysts. Bioorganic and Medicinal Chemistry Letters, 2002, 12, 1821-1824.	2.2	27
61	Simple and straightforward synthesis of novel enantiopure ionic liquids via efficient enzymatic resolution of (±)-2-(1H-imidazol-1-yl)cyclohexanol. Tetrahedron Letters, 2007, 48, 5251-5254.	1.4	27
62	Microwave-Assisted Selective Oxidation of 1-Phenyl Ethanol in Water Catalyzed by Metal Nanoparticles Immobilized onto Supported Ionic Liquidlike Phases. ACS Catalysis, 2015, 5, 4743-4750.	11.2	27
63	Green bioprocesses in sponge-like ionic liquids. Catalysis Today, 2015, 255, 54-59.	4.4	26
64	Selective aerobic oxidation of para-xylene in sub- and supercritical water. Part 2. The discovery of better catalysts. Green Chemistry, 2011, 13, 2397.	9.0	25
65	Residence time distribution, a simple tool to understand the behaviour of polymeric mini-flow reactors. RSC Advances, 2012, 2, 8721.	3.6	25
66	Chiral Imidazolium Receptors for Citrate and Malate: The Importance of the Preorganization. Journal of Organic Chemistry, 2014, 79, 9141-9149.	3.2	25
67	AuNP–Polymeric Ionic Liquid Composite Multicatalytic Nanoreactors for One-Pot Cascade Reactions. ACS Catalysis, 2016, 6, 7230-7237.	11.2	25
68	The catalytic oxidation of benzoic acid to phenol in high temperature water. Journal of Supercritical Fluids, 2006, 39, 220-227.	3.2	24
69	An efficient microwave-assisted enzymatic resolution of alcohols using a lipase immobilised on supported ionic liquid-like phases (SILLPs). RSC Advances, 2013, 3, 13123.	3.6	24
70	LCST-type polymers based on chiral-polymeric ionic liquids. Chemical Communications, 2014, 50, 10683.	4.1	24
71	Modelling residence time distribution in chemical reactors: A novel generalised n-laminar model. Journal of Supercritical Fluids, 2007, 41, 82-91.	3.2	23
72	Selective aerobic oxidation of para-xylene in sub- and supercritical water. Part 1. Comparison with ortho-xylene and the role of the catalyst. Green Chemistry, 2011, 13, 2389.	9.0	23

#	Article	IF	CITATIONS
73	Multifunctional Polymers Based on Ionic Liquid and Rose Bengal Fragments for the Conversion of CO ₂ to Carbonates. ACS Sustainable Chemistry and Engineering, 2021, 9, 2309-2318.	6.7	23
74	Poly(acrylamide-homocysteine thiolactone) as a synthetic platform for the preparation of polymeric ionic liquids by post ring-opening-orthogonal modifications. Polymer Chemistry, 2017, 8, 4789-4797.	3.9	22
75	Enantiopure Triazolium Salts: Chemoenzymatic Synthesis and Applications in Organocatalysis. ChemCatChem, 2011, 3, 1921-1928.	3.7	20
76	An enzymatic biomimetic system: enhancement of catalytic efficiency with new polymeric chiral ionic liquids synthesised by controlled radical polymerisation. Polymer Chemistry, 2014, 5, 1437-1446.	3.9	20
77	Flow Biocatalytic Processes in Ionic Liquids and Supercritical Fluids. Mini-Reviews in Organic Chemistry, 2017, 14, 65-74.	1.3	20
78	Conductivity and Polarization Processes in Highly Cross-Linked Supported Ionic Liquid-Like Phases. Journal of Physical Chemistry C, 2010, 114, 7030-7037.	3.1	19
79	A general route for the preparation of polymer-supported N-tosyl aminoalcohols and their use as chiral auxiliaries. Tetrahedron Letters, 2001, 42, 1673-1675.	1.4	18
80	Hierarchically structured polymeric ionic liquids and polyvinylpyrrolidone mat-fibers fabricated by electrospinning. Journal of Materials Chemistry A, 2017, 5, 9733-9744.	10.3	18
81	High-Pressure High-Temperature Raman Spectroscopy of Liquid and Supercritical Fluids. Applied Spectroscopy, 2003, 57, 1300-1303.	2.2	17
82	Dimethyl carbonate as a non-innocent benign solvent for the multistep continuous flow synthesis of amino alcohols. Reaction Chemistry and Engineering, 2018, 3, 572-578.	3.7	17
83	Supported Ionic Liquid‣ike Phases (SILLPs) as Immobilised Catalysts for the Multistep and Multicatalytic Continuous Flow Synthesis of Chiral Cyanohydrins. ChemCatChem, 2019, 11, 1955-1962.	3.7	17
84	Rose Bengal Immobilized on Supported Ionicâ€Liquidâ€like Phases: An Efficient Photocatalyst for Batch and Flow Processes. ChemSusChem, 2019, 12, 3996-4004.	6.8	16
85	Small Libraries of Polymer-Supported Amino Alcohols: An Application to the Enantioselective Reduction of Acetophenone by LAH. European Journal of Organic Chemistry, 1999, 1999, 2263-2267.	2.4	15
86	FT-Raman as a simple tool for the fast monitoring of reactions on silica-supported reagents and catalysts: application to silica-bound prolinol and TADDOLs. Tetrahedron Letters, 2001, 42, 8459-8462.	1.4	15
87	Development of small focused libraries of supported amino alcohols as an efficient strategy for the optimization of enantioselective heterogeneous catalysts for the ZnEt2 addition to benzaldehyde. Tetrahedron, 2003, 59, 1797-1804.	1.9	15
88	Free ion diffusivity and charge concentration on cross-linked polymeric ionic liquid iongel films based on sulfonated zwitterionic salts and lithium ions. Physical Chemistry Chemical Physics, 2019, 21, 17923-17932.	2.8	15
89	On the origin of changes in topicity observed in Diels–Alder reactions catalyzed by Ti–TADDOLates. Tetrahedron: Asymmetry, 2000, 11, 4885-4893.	1.8	14
90	Chemo-enzymatic production of omega-3 monoacylglycerides using sponge-like ionic liquids and supercritical carbon dioxide. Green Chemistry, 2020, 22, 5701-5710.	9.0	14

#	Article	IF	CITATIONS
91	Urea-Based Low-Molecular-Weight Pseudopeptidic Organogelators for the Encapsulation and Slow Release of (<i>R</i>)-Limonene. Journal of Agricultural and Food Chemistry, 2020, 68, 7051-7061.	5.2	14
92	Experimental spectroscopic high-temperature high-pressure techniques for studying liquid and supercritical fluids. Vibrational Spectroscopy, 2004, 35, 97-101.	2.2	13
93	Preparation and Optimization of Polymer-Supported and Amino Alcohol Based Enantioselective Reagents and Catalysts. Industrial & Engineering Chemistry Research, 2003, 42, 5977-5982.	3.7	12
94	Development of efficient processes under flow conditions based on catalysts immobilized onto monolithic supported ionic liquid-like phases. Pure and Applied Chemistry, 2009, 81, 1991-2000.	1.9	12
95	Chemoenzymatic synthesis of optically active 2-(2′- or 4′-substituted-1H-imidazol-1-yl)cycloalkanols: chiral additives for (l)-proline. Catalysis Science and Technology, 2013, 3, 2596.	4.1	12
96	Sustainable chemo-enzymatic synthesis of glycerol carbonate (meth)acrylate from glycidol and carbon dioxide enabled by ionic liquid technologies. Green Chemistry, 2021, 23, 4191-4200.	9.0	12
97	Towards highly efficient continuous-flow catalytic carbon dioxide cycloadditions with additively manufactured reactors. Green Chemistry, 2022, 24, 3300-3308.	9.0	12
98	Chiral Triazolium Salts and Ionic Liquids: From the Molecular Design Vectors to Their Physical Properties through Specific Supramolecular Interactions. Chemistry - A European Journal, 2013, 19, 892-904.	3.3	11
99	Supramolecular Interactions Based on Ionic Liquids for Tuning of the Catalytic Efficiency of (<scp>l</scp>)-Proline. ACS Sustainable Chemistry and Engineering, 2016, 4, 6062-6071.	6.7	11
100	New porous monolithic membranes based on supported ionic liquid-like phases for oil/water separation and homogenous catalyst immobilisation. Chemical Communications, 2018, 54, 2385-2388.	4.1	11
101	Pseudopeptidic macrocycles as cooperative minimalistic synzyme systems for the remarkable activation and conversion of CO ₂ in the presence of the chloride anion. Green Chemistry, 2020, 22, 4697-4705.	9.0	11
102	A Green Approach for Producing Solvent-free Anisyl Acetate by Enzymecatalyzed Direct Esterification in Sponge-like Ionic Liquids Under Conventional and Microwave Heating. Current Green Chemistry, 2013, 1, 145-154.	1.1	11
103	A simple, safe and robust system for hydrogenation "without high-pressure gases―under batch and flow conditions using a liquid organic hydrogen carrier. Green Chemistry, 2022, 24, 2036-2043.	9.0	11
104	High-temperature and high-pressure cell for kinetic measurements of supercritical fluids reactions with the use of ultraviolet-visible spectroscopy. Review of Scientific Instruments, 2003, 74, 3073-3076.	1.3	10
105	Prevention of Manganese Precipitation during the Continuous Selective Partial Oxidation of Methyl Aromatics with Molecular Oxygen in Supercritical Water. Advanced Synthesis and Catalysis, 2009, 351, 1866-1876.	4.3	10
106	Macroporous polymers tailored as supports for large biomolecules: Ionic liquids as porogenic solvents and as surface modifiers. Reactive and Functional Polymers, 2014, 85, 20-27.	4.1	10
107	New CSPs based on peptidomimetics: efficient chiral selectors in enantioselective separations. Polymer Bulletin, 2002, 48, 9-15.	3.3	9
108	Supported ionic liquid-like phases as efficient solid ionic solvents for the immobilisation of alcohol dehydrogenases towards the development of stereoselective bioreductions. Green Chemistry, 2021, 23, 5609-5617.	9.0	9

#	Article	IF	CITATIONS
109	Synthesis and characterization of the conductivity and polarization processes in supported ionic liquid-like phases (SILLPs). Journal of Non-Crystalline Solids, 2012, 358, 1228-1237.	3.1	8
110	Highly Selective Anion Template Effect in the Synthesis of Constrained Pseudopeptidic Macrocyclic Cyclophanes. Journal of Organic Chemistry, 2020, 85, 1138-1145.	3.2	8
111	Tuning the Catalytic Efficiency of Palladium Supported Complexes (Pdâ€NHCâ€SILLPs): The Cooperative Effect of the Ionic Liquidâ€Like Groups. Macromolecular Symposia, 2012, 317-318, 259-266.	0.7	6
112	Divergent Multistep Continuous Synthetic Transformations of Allylic Alcohol Enabled by Catalysts Immobilized in Ionic Liquid Phases ChemSusChem, 2019, 12, 1684-1691.	6.8	6
113	The Suitability of Lipases for the Synthesis of Bioactive Compounds with Cosmeceutical Applications. Mini-Reviews in Organic Chemistry, 2021, 18, 515-528.	1.3	5
114	Supported ILs and Materials Based on ILs for the Development of Green Synthetic Processes and Procedures. RSC Green Chemistry, 2019, , 289-318.	0.1	5
115	Synergy between supported ionic liquid-like phases and immobilized palladium N-heterocyclic carbene–phosphine complexes for the Negishi reaction under flow conditions. Beilstein Journal of Organic Chemistry, 2020, 16, 1924-1935.	2.2	4
116	Preparation of Nanofibers Mats Derived from Task-Specific Polymeric Ionic Liquid for Sensing and Catalytic Applications. Polymers, 2021, 13, 3110.	4.5	4
117	Structure–antitumor activity relationships of tripodal imidazolium-amino acid based salts. Effect of the nature of the amino acid, amide substitution and anion. Organic and Biomolecular Chemistry, 2021, 19, 10575-10586.	2.8	4
118	Continuous Flow Processes as an Enabling Tool for the Synthesis of Constrained Pseudopeptidic Macrocycles. Journal of Organic Chemistry, 2022, 87, 3519-3528.	3.2	4
119	Imidazolium based gemini amphiphiles derived from L-valine. Structural elements and surfactant properties. Journal of Molecular Liquids, 2021, 341, 117434.	4.9	3
120	Immobilized Supramolecular Systems as Efficient Synzymes for CO ₂ Activation and Conversion. Advanced Sustainable Systems, 2022, 6, .	5.3	3
121	Chiral Imidazolium Prolinate Salts as Efficient Synzymatic Organocatalysts for the Asymmetric Aldol Reaction. Molecules, 2021, 26, 4190.	3.8	2
122	Rational Design of Simple Organocatalysts for the HSiCl3 Enantioselective Reduction of (E)-N-(1-Phenylethylidene)aniline. Molecules, 2021, 26, 6963.	3.8	2
123	Nickel Complexes from α-Amino Amides as Efficient Catalysts for the Enantioselective Et2Zn Addition to Benzaldehyde ChemInform, 2003, 34, no.	0.0	0
124	(Bio)Catalytic Continuous Flow Processes in scCO2 and/or ILs: Towards Sustainable (Bio)Catalytic Synthetic Platforms. Current Organic Synthesis, 2011, 8, 810-823.	1.3	0
125	Inside Cover: Immobilised Lipase on Structured Supports Containing Covalently Attached Ionic Liquids for the Continuous Synthesis of Biodiesel in scCO2 (ChemSusChem 4/2012). ChemSusChem, 2012, 5, 602-602.	6.8	0
126	Polymers with Ionic Liquid Fragments as Potential Conducting Materials for Advanced Applications. , 0, , .		0

#	Article	IF	CITATIONS
127	Unravelling the Supramolecular Driving Forces in the Formation of CO2-Responsive Pseudopeptidic Low-Molecular-Weight Hydrogelators. Gels, 2022, 8, 390.	4.5	0