
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8936758/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multi-Angle In Vivo Imaging of the Arabidopsis thaliana Shoot Apical Meristem (SAM). Methods in Molecular Biology, 2022, 2457, 427-441.	0.4	1
2	Transcriptional landscape of rice roots at the single-cell resolution. Molecular Plant, 2021, 14, 384-394.	3.9	131
3	Casting the Net—Connecting Auxin Signaling to the Plant Genome. Cold Spring Harbor Perspectives in Biology, 2021, 13, a040006.	2.3	2
4	Independent parental contributions initiate zygote polarization in Arabidopsis thaliana. Current Biology, 2021, 31, 4810-4816.e5.	1.8	12
5	Distinct and Overlapping Functions of Miscanthus sinensis MYB Transcription Factors SCM1 and MYB103 in Lignin Biosynthesis. International Journal of Molecular Sciences, 2021, 22, 12395.	1.8	5
6	WUSCHEL triggers innate antiviral immunity in plant stem cells. Science, 2020, 370, 227-231.	6.0	63
7	Mathematical modeling of plant cell fate transitions controlled by hormonal signals. PLoS Computational Biology, 2020, 16, e1007523.	1.5	6
8	Structural basis for the complex DNA binding behavior of the plant stem cell regulator WUSCHEL. Nature Communications, 2020, 11, 2223.	5.8	22
9	Aiming for the top: non-cell autonomous control of shoot stem cells in Arabidopsis. Journal of Plant Research, 2020, 133, 297-309.	1.2	23
10	Temporal integration of auxin information for the regulation of patterning. ELife, 2020, 9, .	2.8	94
11	Accurate and versatile 3D segmentation of plant tissues at cellular resolution. ELife, 2020, 9, .	2.8	155
12	WUSCHEL acts as an auxin response rheostat to maintain apical stem cells in Arabidopsis. Nature Communications, 2019, 10, 5093.	5.8	143
13	An apical hypoxic niche sets the pace of shoot meristem activity. Nature, 2019, 569, 714-717.	13.7	137
14	Inducible, Cell Type-Specific Expression in Arabidopsis thaliana Through LhGR-Mediated Trans -Activation. Journal of Visualized Experiments, 2019, , .	0.2	1
15	Plant-thickening mechanisms revealed. Nature, 2019, 565, 433-435.	13.7	2
16	Spatial specificity of auxin responses coordinates wood formation. Nature Communications, 2018, 9, 875.	5.8	110
17	A molecular network for functional versatility of HECATE transcription factors. Plant Journal, 2018, 95, 57-70.	2.8	20
18	WEADE: A workflow for enrichment analysis and data exploration. PLoS ONE, 2018, 13, e0204016.	1.1	3

#	Article	IF	CITATIONS
19	Decoding the Regulatory Logic of the Drosophila Male Stem Cell System. Cell Reports, 2018, 24, 3072-3086.	2.9	12
20	Epigenetic reprogramming by histone acetyltransferase HAG1/AtGCN5 is required for pluripotency acquisition in <i>Arabidopsis</i> . EMBO Journal, 2018, 37, .	3.5	92
21	From signals to stem cells and back again. Current Opinion in Plant Biology, 2018, 45, 136-142.	3.5	23
22	A Comprehensive Toolkit for Inducible, Cell Type-Specific Gene Expression in Arabidopsis. Plant Physiology, 2018, 178, 40-53.	2.3	73
23	RETINOBLASTOMA RELATED1 mediates germline entry in <i>Arabidopsis</i> . Science, 2017, 356, .	6.0	97
24	Beyond flexibility: controlling stem cells in an ever changing environment. Current Opinion in Plant Biology, 2017, 35, 117-123.	3.5	38
25	Predicting gene regulatory networks by combining spatial and temporal gene expression data in <i>Arabidopsis</i> root stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E7632-E7640.	3.3	82
26	Control of plant cell fate transitions by transcriptional and hormonal signals. ELife, 2017, 6, .	2.8	39
27	Plant Stem Cells. Current Biology, 2016, 26, R816-R821.	1.8	129
28	Integration of light and metabolic signals for stem cell activation at the shoot apical meristem. ELife, 2016, 5, .	2.8	158
29	Germline-Transmitted Genome Editing in Arabidopsis thaliana Using TAL-Effector-Nucleases. PLoS ONE, 2015, 10, e0121056.	1.1	35
30	<i>Arabidopsis HECATE</i> genes function in phytohormone control during gynoecium development. Development (Cambridge), 2015, 142, 3343-50.	1.2	86
31	The never-ending story: from pluripotency to plant developmental plasticity. Development (Cambridge), 2015, 142, 2237-2249.	1.2	170
32	Auxin-modulated root growth inhibition in Arabidopsis thaliana seedlings with ammonium as the sole nitrogen source. Functional Plant Biology, 2015, 42, 239.	1.1	32
33	Job Sharing in the Endomembrane System: Vacuolar Acidification Requires the Combined Activity of V-ATPase and V-PPase. Plant Cell, 2015, 27, 3383-3396.	3.1	92
34	O Cell, Where Art Thou? The mechanisms of shoot meristem patterning. Current Opinion in Plant Biology, 2015, 23, 91-97.	3.5	83
35	Genome Wide Binding Site Analysis Reveals Transcriptional Coactivation of Cytokinin-Responsive Genes by DELLA Proteins. PLoS Genetics, 2015, 11, e1005337.	1.5	99
36	A mechanistic framework for noncell autonomous stem cell induction in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 14619-14624.	3.3	286

#	Article	IF	CITATIONS
37	A Regulatory Framework for Shoot Stem Cell Control Integrating Metabolic, Transcriptional, and Phytohormone Signals. Developmental Cell, 2014, 28, 438-449.	3.1	104
38	Live Imaging of Arabidopsis Development. Methods in Molecular Biology, 2014, 1062, 539-550.	0.4	14
39	Regulation of Plant Stem Cell Quiescence by a Brassinosteroid Signaling Module. Developmental Cell, 2014, 30, 36-47.	3.1	164
40	Detection of mRNA Expression Patterns by Nonradioactive In Situ Hybridization on Histological Sections of Floral Tissue. Methods in Molecular Biology, 2014, 1110, 275-293.	0.4	30
41	MoD Special Issue on developmental plasticity and adaptation in plants. Mechanisms of Development, 2013, 130, 1.	1.7	Ο
42	GreenCate - A Novel, Versatile, and Efficient Cloning System for Plant Transgenesis. PLoS ONE, 2013, 8, e83043.	1.1	426
43	Stem cells: A view from the roots. Biotechnology Journal, 2012, 7, 704-722.	1.8	14
44	The bZIP Transcription Factor PERIANTHIA: A Multifunctional Hub for Meristem Control. Frontiers in Plant Science, 2011, 2, 79.	1.7	41
45	Role of A-type ARABIDOPSIS RESPONSE REGULATORS in meristem maintenance and regeneration. European Journal of Cell Biology, 2010, 89, 279-284.	1.6	103
46	Hormonal control of the shoot stem-cell niche. Nature, 2010, 465, 1089-1092.	13.7	421
47	Transcriptional Control of a Plant Stem Cell Niche. Developmental Cell, 2010, 18, 841-853.	3.1	221
48	KIRMES: kernel-based identification of regulatory modules in euchromatic sequences. Bioinformatics, 2009, 25, 2126-2133.	1.8	21
49	DETORQUEO, QUIRKY, and ZERZAUST Represent Novel Components Involved in Organ Development Mediated by the Receptor-Like Kinase STRUBBELIG in Arabidopsis thaliana. PLoS Genetics, 2009, 5, e1000355.	1.5	78
50	Dual roles of the bZIP transcription factor PERIANTHIA in the control of floral architecture and homeotic gene expression. Development (Cambridge), 2009, 136, 1613-1620.	1.2	106
51	Cell signalling and gene regulation. Current Opinion in Plant Biology, 2009, 12, 517-519.	3.5	Ο
52	The DOF transcription factor OBP1 is involved in cell cycle regulation in <i>Arabidopsis thaliana</i> . Plant Journal, 2008, 56, 779-792.	2.8	120
53	Dual roles of the nuclear cap-binding complex and SERRATE in pre-mRNA splicing and microRNA processing in <i>Arabidopsis thaliana</i> . Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 8795-8800.	3.3	378
54	A Quantitative and Dynamic Model for Plant Stem Cell Regulation. PLoS ONE, 2008, 3, e3553.	1.1	56

#	Article	IF	CITATIONS
55	Reduced V-ATPase Activity in the <i>trans</i> -Golgi Network Causes Oxylipin-Dependent Hypocotyl Growth Inhibition in <i>Arabidopsis</i> Â. Plant Cell, 2008, 20, 1088-1100.	3.1	117
56	Requirement of B2-Type <i>Cyclin-Dependent Kinases</i> for Meristem Integrity in <i>Arabidopsis thaliana</i> . Plant Cell, 2008, 20, 88-100.	3.1	181
57	Plant Stem Cells: Divide et Impera. , 2008, , 1-15.		2
58	Distinct Expression Patterns of Natural Antisense Transcripts in Arabidopsis. Plant Physiology, 2007, 144, 1247-1255.	2.3	84
59	Profiling a plant: expression analysis in Arabidopsis. Current Opinion in Plant Biology, 2007, 10, 136-141.	3.5	35
60	Transgenic Hydra allow in vivo tracking of individual stem cells during morphogenesis. Proceedings of the United States of America, 2006, 103, 6208-6211.	3.3	288
61	Whole-Genome Analysis of the SHORT-ROOT Developmental Pathway in Arabidopsis. PLoS Biology, 2006, 4, e143.	2.6	283
62	A gene expression map of Arabidopsis thaliana development. Nature Genetics, 2005, 37, 501-506.	9.4	2,293
63	WUSCHEL controls meristem function by direct regulation of cytokinin-inducible response regulators. Nature, 2005, 438, 1172-1175.	13.7	747
64	Integration of Spatial and Temporal Information During Floral Induction in Arabidopsis. Science, 2005, 309, 1056-1059.	6.0	1,230
65	From Tough Nuts to Touch-Me-Nots. Cell, 2004, 116, 763-764.	13.5	6
66	Dissection of floral induction pathways using global expression analysis. Development (Cambridge), 2003, 130, 6001-6012.	1.2	418
67	Building Beauty. Developmental Cell, 2002, 2, 135-142.	3.1	212
68	In vivo electroporation for genetic manipulations of whole Hydra polyps. Differentiation, 2002, 70, 140-147.	1.0	17
69	A Molecular Link between Stem Cell Regulation and Floral Patterning in Arabidopsis. Cell, 2001, 105, 793-803.	13.5	650
70	Nonradioactive Differential Display of Messenger RNA. , 2000, , 645-651.		0
71	The novel peptide HEADY specifies apical fate in a simple radially symmetric metazoan. Genes and Development, 2000, 14, 2771-2777.	2.7	54
72	High-Resolution, Fluorescence-Based Differential Display on a DNA Sequencer Followed by Band Excision. BioTechniques, 1999, 27, 268-271.	0.8	6

#	Article	IF	CITATIONS
73	Head-specific gene expression in Hydra: Complexity of DNA- protein interactions at the promoter of ks1 is inversely correlated to the head activation potential. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 1445-1450.	3.3	49
74	Silencing of Developmental Genes in Hydra. Developmental Biology, 1999, 214, 211-214.	0.9	173
75	Identification of Differentially Expressed Genes by Nonradioactive Differential Display of Messenger RNA. , 1998, 86, 153-160.		6
76	Systematic isolation of peptide signal molecules regulating development in hydra: LWamide and PW families. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 1241-1246.	3.3	174