Ta-Peng Chang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8936577/publications.pdf Version: 2024-02-01

TA-DENC CHANC

#	Article	IF	CITATIONS
1	Graphene oxide synthesis using a top–down approach and discrete characterization techniques: a holistic review. Carbon Letters, 2022, 32, 1-38.	3.3	14
2	Enhancement of early engineering characteristics of modified slag cement paste with alkali silicate and sulfate. Construction and Building Materials, 2020, 230, 117013.	3.2	24
3	Improving the Mechanical and Durability Performance of No-Cement Self-Compacting Concrete by Fly Ash. Journal of Materials in Civil Engineering, 2020, 32, .	1.3	6
4	Influence of low calcium fly ash on compressive strength and hydration product of low energy super sulfated cement paste. Cement and Concrete Composites, 2019, 99, 40-48.	4.6	44
5	Compressive Strength and Abrasion Resistance Properties of Silica Fume-Polymer Resin Modified Concrete. , 2017, , .		0
6	Cementitious properties and microstructure of an innovative slag eco-binder. Materials and Structures/Materiaux Et Constructions, 2016, 49, 2009-2024.	1.3	21
7	Hydration Process and Compressive Strength of Slag-CFBC Fly Ash Materials without Portland Cement. Journal of Materials in Civil Engineering, 2015, 27, .	1.3	21
8	Performance and microstructural examination on composition of hardened paste with no-cement SFC binder. Construction and Building Materials, 2015, 76, 264-272.	3.2	28
9	Factors affecting bond strength at early age between cladding plaster and concrete substrate. European Journal of Environmental and Civil Engineering, 2014, 18, 1025-1041.	1.0	4
10	Evaluation of Resonant Frequencies of Solid Circular Rods withÂlmpact-Echo Method. Journal of Nondestructive Evaluation, 2010, 29, 111-121.	1.1	11
11	Service Life Prediction for Concrete Structures by Time-Depth Dependent Chloride Diffusion Coefficient. Journal of Materials in Civil Engineering, 2010, 22, 1187-1190.	1.3	10
12	Kirchhoff transformation analysis for determining time/depth dependent chloride diffusion coefficient in concrete. Journal of Materials Science, 2008, 43, 1429-1437.	1.7	12
13	Applying Gray Relational Analysis with Gray Numbers to Qualitative Identification of the Origin of Hydraulic Cement Clinker by Trace Elements. Journal of Materials in Civil Engineering, 2008, 20, 539-543.	1.3	5
14	Material properties of portland cement paste with nano-montmorillonite. Journal of Materials Science, 2007, 42, 7478-7487.	1.7	198
15	Effect of nanosilica on characterization of Portland cement composite. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 424, 266-274.	2.6	242