
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8935906/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Gasoline engine exhaust gas recirculation – A review. Applied Energy, 2012, 99, 534-544.	5.1	277
2	A review of waste heat recovery on two-stroke IC engine aboard ships. Renewable and Sustainable Energy Reviews, 2013, 19, 385-401.	8.2	242
3	Fluids and parameters optimization for the organic Rankine cycles (ORCs) used inÂexhaust heat recovery of Internal Combustion Engine (ICE). Energy, 2012, 47, 125-136.	4.5	235
4	Simulation and thermodynamic analysis of a bottoming Organic Rankine Cycle (ORC) of diesel engine (DE). Energy, 2013, 51, 281-290.	4.5	221
5	Alkanes as working fluids for high-temperature exhaust heat recovery of diesel engine using organic Rankine cycle. Applied Energy, 2014, 119, 204-217.	5.1	207
6	Parametric and working fluid analysis of a dual-loop organic Rankine cycle (DORC) used in engine waste heat recovery. Applied Energy, 2014, 113, 1188-1198.	5.1	166
7	Study of mixtures based on hydrocarbons used in ORC (Organic Rankine Cycle) for engine waste heat recovery. Energy, 2014, 74, 428-438.	4.5	127
8	Parametric and exergetic analysis of waste heat recovery system based on thermoelectric generator and organic rankine cycle utilizing R123. Energy, 2012, 45, 806-816.	4.5	115
9	The role of low temperature chemistry in combustion mode development under elevated pressures. Combustion and Flame, 2016, 174, 179-193.	2.8	106
10	Performance comparison and working fluid analysis of subcritical and transcritical dual-loop organic Rankine cycle (DORC) used in engine waste heat recovery. Energy Conversion and Management, 2013, 74, 35-43.	4.4	98
11	Effect of oxygen enriched combustion and water–diesel emulsion on the performance and emissions of turbocharged diesel engine. Energy Conversion and Management, 2013, 73, 69-77.	4.4	96
12	Multi-approach evaluations of a cascade-Organic Rankine Cycle (C-ORC) system driven by diesel engine waste heat: Part A – Thermodynamic evaluations. Energy Conversion and Management, 2016, 108, 579-595.	4.4	90
13	A Multi-Approach Evaluation System (MA-ES) of Organic Rankine Cycles (ORC) used in waste heat utilization. Applied Energy, 2014, 132, 325-338.	5.1	85
14	Experimental investigation on thermal OS/ORC (Oil Storage/Organic Rankine Cycle) system for waste heat recovery from diesel engine. Energy, 2016, 107, 693-706.	4.5	76
15	Comparative study of alternative ORC-based combined power systems to exploit high temperature waste heat. Energy Conversion and Management, 2015, 89, 541-554.	4.4	72
16	Experimental investigation on the knocking combustion characteristics of n-butanol gasoline blends in a DISI engine. Applied Energy, 2016, 175, 346-355.	5.1	72
17	Analysis of regenerative dual-loop organic Rankine cycles (DORCs) used in engine waste heat recovery. Energy Conversion and Management, 2013, 76, 234-243.	4.4	70
18	Experimental investigation on the combustion and emissions characteristics of 2-methylfuran gasoline blend fuel in spark-ignition engine. Applied Energy, 2014, 132, 317-324.	5.1	69

#	Article	lF	CITATIONS
19	Comparison of the two-stage and traditional single-stage thermoelectric generator in recovering the waste heat of the high temperature exhaust gas of internal combustion engine. Energy, 2014, 77, 489-498.	4.5	68
20	Effects of applying a Miller cycle with split injection on engine performance and knock resistance in a downsized gasoline engine. Fuel, 2018, 214, 98-107.	3.4	68
21	Understanding strong knocking mechanism through high-strength optical rapid compression machines. Combustion and Flame, 2019, 202, 1-15.	2.8	68
22	Machine learning for combustion. Energy and Al, 2022, 7, 100128.	5.8	68
23	Analysis of onset and severity of knock in SI engine based on in-cylinder pressure oscillations. Applied Thermal Engineering, 2013, 51, 1297-1306.	3.0	63
24	Multi-approach evaluations of a cascade-Organic Rankine Cycle (C-ORC) system driven by diesel engine waste heat: Part B-techno-economic evaluations. Energy Conversion and Management, 2016, 108, 596-608.	4.4	63
25	Interactions of flame propagation, auto-ignition and pressure wave during knocking combustion. Combustion and Flame, 2016, 164, 319-328.	2.8	62
26	Theoretical research on working fluid selection for a high-temperature regenerative transcritical dual-loop engine organic Rankine cycle. Energy Conversion and Management, 2014, 86, 764-773.	4.4	60
27	Temperature gradient induced detonation development inside and outside a hotspot for different fuels. Combustion and Flame, 2019, 205, 269-277.	2.8	59
28	Interaction of Flame Propagation and Pressure Waves During Knocking Combustion in Spark-Ignition Engines. Combustion Science and Technology, 2014, 186, 192-209.	1.2	55
29	Knock characteristics of SI engine fueled with n-butanol in combination with different EGR rate. Energy, 2017, 118, 190-196.	4.5	55
30	Influence of pre-chamber structure and injection parameters on engine performance and combustion characteristics in a turbulent jet ignition (TJI) engine. Fuel, 2021, 283, 119236.	3.4	55
31	Combustion performance of dual-injection using n-butanol direct-injection and gasoline port fuel-injection in a SI engine. Energy, 2018, 160, 573-581.	4.5	52
32	Analysis of an electricity–cooling cogeneration system based on RC–ARS combined cycle aboard ship. Energy Conversion and Management, 2013, 76, 1053-1060.	4.4	50
33	LES analysis for auto-ignition induced abnormal combustion based on a downsized SI engine. Applied Energy, 2017, 191, 183-192.	5.1	49
34	Experimental investigation on knocking combustion characteristics of gasoline compression ignition engine. Energy, 2018, 143, 624-633.	4.5	46
35	Effects of EGR, compression ratio and boost pressure on cyclic variation of PFI gasoline engine at WOT operation. Applied Thermal Engineering, 2014, 64, 491-498.	3.0	45
36	Different combustion modes caused by flame-shock interactions in a confined chamber with a perforated plate. Combustion and Flame, 2017, 178, 277-285.	2.8	45

#	Article	IF	CITATIONS
37	Theoretical analysis of a novel electricity–cooling cogeneration system (ECCS) based on cascade use of waste heat of marine engine. Energy Conversion and Management, 2014, 85, 888-894.	4.4	44
38	A predictive Livengood–Wu correlation for two-stage ignition. International Journal of Engine Research, 2016, 17, 825-835.	1.4	44
39	Numerical investigations on the effects of turbulence intensity on knocking combustion in a downsized gasoline engine. Energy, 2019, 166, 318-325.	4.5	44
40	Effects of spark plug type and ignition energy on combustion performance in an optical SI engine fueled with methane. Applied Thermal Engineering, 2019, 148, 188-195.	3.0	39
41	Experimental investigation on combustion characteristics in dual-fuel dual-injection engine. Energy Conversion and Management, 2019, 181, 15-25.	4.4	39
42	Effect of pressure wave disturbance on auto-ignition mode transition and knocking intensity under enclosed conditions. Combustion and Flame, 2017, 185, 63-74.	2.8	38
43	Effects of applying EGR with split injection strategy on combustion performance and knock resistance in a spark assisted compression ignition (SACI) engine. Applied Thermal Engineering, 2018, 145, 98-109.	3.0	38
44	Effect of hydrogen-air mixture diluted with argon/nitrogen/carbon dioxide on combustion processes in confined space. International Journal of Hydrogen Energy, 2018, 43, 14798-14805.	3.8	37
45	Mechanism of end-gas autoignition induced by flame-pressure interactions in confined space. Physics of Fluids, 2019, 31, .	1.6	37
46	Large-eddy simulation study on cycle-to-cycle variation of knocking combustion in a spark-ignition engine. Applied Energy, 2020, 261, 114447.	5.1	37
47	Understanding the difference in combustion and flame propagation characteristics between ammonia and methane using an optical SI engine. Fuel, 2022, 324, 124794.	3.4	36
48	Effects of the equivalence ratio on turbulent flame–shock interactions in a confined space. Combustion and Flame, 2017, 186, 247-262.	2.8	35
49	An experimental and modeling study of ammonia oxidation in a jet stirred reactor. Combustion and Flame, 2022, 240, 112007.	2.8	35
50	Turbulent flame propagation with pressure oscillation in the end gas region of confined combustion chamber equipped with different perforated plates. Combustion and Flame, 2018, 191, 453-467.	2.8	34
51	Optical study on the effects of the hydrogen injection timing on lean combustion characteristics using a natural gas/hydrogen dual-fuel injected spark-ignition engine. International Journal of Hydrogen Energy, 2021, 46, 20777-20789.	3.8	34
52	Effects of different hole structures of pre-chamber with turbulent jet ignition on the flame propagation and lean combustion performance of a single-cylinder engine. Fuel, 2022, 308, 121902.	3.4	34
53	Performance comparison of 2-methylfuran and gasoline on a spark-ignition engine with cooled exhaust gas recirculation. Fuel, 2014, 132, 36-43.	3.4	33
54	Comparative study on combined effects of cooled EGR with intake boosting and variable compression ratios on combustion and emissions improvement in a SI engine. Applied Thermal Engineering, 2018, 131, 192-200.	3.0	33

#	Article	IF	CITATIONS
55	Effect of rapid combustion on engine performance and knocking characteristics under different spark strategy conditions. Energy, 2020, 192, 116706.	4.5	33
56	Effect of swirl flow on spray and combustion characteristics with heavy fuel oil under two-stroke marine engine relevant conditions. Applied Thermal Engineering, 2017, 124, 302-314.	3.0	32
57	Effects on performance and emissions of gasoline compression ignition engine over a wide range of internal exhaust gas recirculation rates under lean conditions. Fuel, 2020, 265, 116881.	3.4	32
58	Flame temperature theory-based model for evaluation of the flammable zones of hydrocarbon-air-CO2 mixtures. Journal of Hazardous Materials, 2015, 294, 137-144.	6.5	31
59	A review and selection of engine waste heat recovery technologies using analytic hierarchy process and grey relational analysis. International Journal of Energy Research, 2015, 39, 453-471.	2.2	30
60	Effects of high ignition energy on lean combustion characteristics of natural gas using an optical engine with a high compression ratio. Energy, 2021, 223, 120053.	4.5	30
61	Operation strategy optimization of lean combustion using turbulent jet ignition at different engine loads. Applied Energy, 2021, 302, 117586.	5.1	30
62	Effect of turbulent mixing on the end gas auto-ignition of n-heptane/air mixtures under IC engine-relevant conditions. Combustion and Flame, 2016, 174, 25-36.	2.8	29
63	Effects of equivalence ratio and pilot fuel mass on ignition/extinction and pressure oscillation in a methane/diesel engine with pre-chamber. Applied Thermal Engineering, 2019, 158, 113777.	3.0	29
64	Flame propagation and combustion modes in end-gas region of confined space. Combustion and Flame, 2018, 190, 216-223.	2.8	28
65	Experimental analysis of super-knock occurrence based on a spark ignition engine with high compression ratio. Energy, 2018, 165, 68-75.	4.5	28
66	Experimental study on combustion characteristics and emission performance of 2-phenylethanol addition in a downsized gasoline engine. Energy, 2018, 163, 894-904.	4.5	28
67	Research on in-cylinder pressure oscillation characteristic during knocking combustion in spark-ignition engine. Fuel, 2014, 120, 150-157.	3.4	27
68	lgnition Characteristics of Methane/ <i>n</i> -Heptane Fuel Blends under Engine-like Conditions. Energy & Fuels, 2018, 32, 6264-6277.	2.5	27
69	Knock characteristics and combustion regime diagrams of multiple combustion modes based on experimental investigations. Applied Energy, 2018, 229, 31-41.	5.1	27
70	Effects of miller cycle strategies on combustion characteristics and knock resistance in a spark assisted compression ignition (SACI) engine. Energy, 2020, 206, 118119.	4.5	27
71	The ignition characteristics of the pre-chamber turbulent jet ignition of the hydrogen and methane based on different orifices. International Journal of Hydrogen Energy, 2021, 46, 37083-37097.	3.8	27
72	Numerical Study on the Effects of Multiple-Injection Coupled with EGR on Combustion and NOx Emissions in a Marine Diesel Engine. Energy Procedia, 2019, 158, 4429-4434.	1.8	26

#	Article	IF	CITATIONS
73	Experimental observation of lean flammability limits using turbulent jet ignition with auxiliary hydrogen and methane in pre-chamber. Fuel, 2021, 305, 121570.	3.4	26
74	Evaluating upper flammability limit of low hydrocarbon diluted with an inert gas using threshold temperature. Chemical Engineering Science, 2015, 138, 810-813.	1.9	25
75	Turbulent flame–shock interaction inducing end-gas autoignition in a confined space. Combustion and Flame, 2019, 204, 137-141.	2.8	25
76	Effects of pre-chamber jet ignition on knock and combustion characteristics in a spark ignition engine fueled with kerosene. Fuel, 2021, 293, 120278.	3.4	25
77	Effects of late injection on lean combustion characteristics of methane in a high compression ratio optical engine. Fuel, 2019, 255, 115718.	3.4	24
78	Relationship of flame propagation and combustion mode transition of end-gas based on pressure wave in confined space. Combustion and Flame, 2020, 214, 371-386.	2.8	24
79	Droplet evaporation and phase transition modes in supercritical environment by molecular dynamic simulation. Physics of Fluids, 2021, 33, .	1.6	24
80	Effect of internal exhaust gas recirculation on the combustion characteristics of gasoline compression ignition engine under low to idle conditions. Energy, 2018, 164, 306-315.	4.5	23
81	An experimental investigation on pre-ignition phenomena: Emphasis on the role of turbulence. Proceedings of the Combustion Institute, 2021, 38, 5801-5810.	2.4	23
82	Experimental analysis on spray development of 2-methylfuran–gasoline blends using multi-hole DI injector. Fuel, 2016, 164, 245-253.	3.4	22
83	Experimental investigations on combustion acceleration behavior of methane/gasoline under partial load conditions of SI engines. Applied Thermal Engineering, 2018, 139, 432-444.	3.0	22
84	Spray–turbulence–chemistry interactions under engine-like conditions. Progress in Energy and Combustion Science, 2021, 86, 100939.	15.8	22
85	Numerical analysis of knocking characteristics and heat release under different turbulence intensities in a gasoline engine. Applied Thermal Engineering, 2019, 159, 113879.	3.0	21
86	Optical experiments on the effect of turbulent jet ignition on lean burning and engine knocking. Fuel, 2022, 307, 121869.	3.4	21
87	Flame–spray interaction and combustion features in split-injection spray flames under diesel engine-like conditions. Combustion and Flame, 2019, 210, 204-221.	2.8	20
88	Effect of flame speed on knocking characteristics for SI engine under critical knocking conditions. Fuel, 2020, 282, 118846.	3.4	20
89	Effect of initial pressure on flame–shock interaction of hydrogen–air premixed flames. International Journal of Hydrogen Energy, 2017, 42, 12657-12668.	3.8	19
90	An Experimental Investigation on Low Load Combustion Stability and Cold-Firing Capacity of a Gasoline Compression Ignition Engine. Engineering, 2019, 5, 558-567.	3.2	18

#	Article	IF	CITATIONS
91	Effect of injection timing on the ignition process of n-heptane spray flame in a methane/air environment. Fuel, 2019, 245, 345-359.	3.4	18
92	Effects of oxygen concentrations on the ignition and quasi-steady processes of n-heptane spray flames using large eddy simulation. Fuel, 2019, 241, 786-801.	3.4	18
93	Effects of direct-injected hydrogen addition on methane combustion performance in an optical SI engine with high compression-ratio. International Journal of Hydrogen Energy, 2020, 45, 3284-3293.	3.8	18
94	A numerical study on pressure wave-induced end gas auto-ignition near top dead center of a downsized spark ignition engine. International Journal of Hydrogen Energy, 2014, 39, 21265-21274.	3.8	17
95	Experimental observations of turbulent flame propagation effected by flame acceleration in the end gas of closed combustion chamber. Fuel, 2016, 180, 157-163.	3.4	17
96	Pressure wave evolution during two hotspots autoignition within end-gas region under internal combustion engine-relevant conditions. Combustion and Flame, 2018, 189, 142-154.	2.8	17
97	Understanding the correlation between auto-ignition, heat release and knocking characteristics through optical engines with high compression ratio. Fuel, 2020, 261, 116405.	3.4	17
98	Investigation of lubricant induced pre-ignition and knocking combustion in an optical spark ignition engine. Proceedings of the Combustion Institute, 2019, 37, 4901-4910.	2.4	16
99	Effects of partitioned fuel distribution on auto-ignition and knocking under spark assisted compression ignition conditions. Applied Energy, 2020, 260, 114269.	5.1	16
100	Experimental investigation of the stochastic nature of end-gas autoignition with detonation development in confined combustion chamber. Combustion and Flame, 2019, 210, 324-338.	2.8	15
101	The mechanism of flame propagation affected by flow/shock wave in a confined combustion chamber equipped with a perforated plate. International Journal of Hydrogen Energy, 2019, 44, 7675-7683.	3.8	14
102	Experimental study on the effect of pre-ignition heat release on GCI engine combustion. Fuel, 2020, 262, 116562.	3.4	14
103	Optical experiments on diesel knock for high altitude engines under spray impingement conditions. Fuel, 2020, 278, 118268.	3.4	14
104	One-dimensional numerical study on pressure wave–flame interaction and flame acceleration under engine-relevant conditions. International Journal of Hydrogen Energy, 2015, 40, 4874-4883.	3.8	13
105	On autoignition mode under variable thermodynamic state of internal combustion engines. International Journal of Engine Research, 2020, 21, 856-865.	1.4	13
106	Calculation on cylinder pressure fluctuation by using the wave equation in KIVA program. Chinese Journal of Mechanical Engineering (English Edition), 2012, 25, 362-369.	1.9	12
107	Effect of Retarded Injection Timing on Knock Resistance and Cycle to Cycle Variation in Gasoline Direct Injection Engine. Journal of Energy Resources Technology, Transactions of the ASME, 2018, 140, .	1.4	12
108	Development of a surrogate fuel mechanism for application in two-stroke marine diesel engine. Energy, 2018, 153, 56-64.	4.5	12

#	Article	lF	CITATIONS
109	Improvement of engine performance with high compression ratio based on knock suppression using Miller cycle with boost pressure and split injection. Frontiers in Energy, 2019, 13, 691-706.	1.2	12
110	Chemistry acceleration with tabulated dynamic adaptive chemistry in a realistic engine with a primary reference fuel. Fuel, 2016, 171, 186-194.	3.4	11
111	Sensitivity Analysis of Heavy Fuel Oil Spray and Combustion under Low-Speed Marine Engine-Like Conditions. Energies, 2017, 10, 1223.	1.6	11
112	Numerical investigation of diesel spray flame structures under diesel engine-relevant conditions using large eddy simulation. Combustion Science and Technology, 2018, 190, 909-932.	1.2	11
113	Large eddy simulation of the low temperature ignition and combustion processes on spray flame with the linear eddy model. Combustion Theory and Modelling, 2018, 22, 237-263.	1.0	11
114	Influence of injection strategies on knock resistance and combustion characteristics in a DISI engine. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2019, 233, 2637-2649.	1.1	11
115	Effect of diluent gases on end-gas autoignition and combustion modes in a confined space. Combustion and Flame, 2020, 222, 48-60.	2.8	11
116	Effects of initial temperature on ignition and flame propagation of dual-fuel mixture in mixing layer. Combustion and Flame, 2021, 225, 468-484.	2.8	11
117	Experimental study on stoichiometric laminar flame velocities and Markstein lengths of methane and PRF95 dual fuels. Fuel, 2016, 182, 721-731.	3.4	10
118	Experimental study on laminar flame characteristics of methane-PRF95 dual fuel under lean burn conditions. Fuel, 2016, 185, 254-262.	3.4	10
119	An investigation of in situ adaptive tabulation for premixed and nonpremixed combustion engine simulations with primary reference fuel mechanism. Applied Thermal Engineering, 2017, 111, 526-536.	3.0	10
120	Optical study on autoignition and knocking characteristics of dual-fuel engine under CI vs SI combustion modes. Fuel, 2020, 266, 117107.	3.4	10
121	CO ₂ activation and dissociation on ln ₂ O ₃ (110) supported Pd _n Pt _(4â~`n) (<i>n</i> = 0â€"4) catalysts: a density functional theory study. Physical Chemistry Chemical Physics, 2021, 23, 11557-11567.	1.3	10
122	Experimental investigation of combustion modes and transition mechanism in confined combustion chamber. Combustion and Flame, 2021, 230, 111451.	2.8	10
123	The LES and LEM Study of End-Gas Auto-Ignition Mechanism in a Downsized Spark Ignition Engine: Effect of Turbulence. Combustion Science and Technology, 2019, 191, 1917-1941.	1.2	9
124	Flame Propagation and Combustion Phenomena in a Confined Space with the Perforated Plate at Different Positions. Combustion Science and Technology, 2020, 192, 493-512.	1.2	9
125	Experimental investigation on the propagation of flow and flame in a confined combustion chamber equipped with a single-hole perforated plate. International Journal of Hydrogen Energy, 2020, 45, 32589-32597.	3.8	9
126	Effects of reactivity inhomogeneities on knock combustion in a downsized spark-ignition engine. Fuel, 2020, 278, 118317.	3.4	9

#	Article	IF	CITATIONS
127	Mechanism of Methanol Synthesis from CO ₂ Hydrogenation over Pt ₈ /In ₂ O ₃ Catalysts: A Combined Study on Density Functional Theory and Microkinetic Modeling. Journal of Physical Chemistry C, 2022, 126, 1761-1769.	1.5	9
128	Experimental Investigation on the Combustion Characteristics of NH ₃ /H ₂ /air by the Spark Ignition and Turbulent Jet Ignition. Combustion Science and Technology, 2024, 196, 73-94.	1.2	9
129	Toward Efficient Chemistry Calculations in Engine Simulations Through Static Adaptive Acceleration. Combustion Science and Technology, 2017, 189, 623-642.	1.2	8
130	Large Eddy Simulation on the Flame Structure for Split Injections of n-dodecane at Different Temperatures and Densities. Combustion Science and Technology, 2018, 190, 2224-2244.	1.2	8
131	Experimental observation of end-gas autoignition and developing detonation in a confined space using gasoline fuel. Combustion and Flame, 2020, 222, 1-4.	2.8	8
132	LES study on the interaction between the local flow and flame structure in multi-injection of n-dodecane. Fuel, 2021, 285, 119214.	3.4	8
133	Numerical Study on the Combustion Process of n-heptane Spray Flame in Methane Environment Using Large Eddy Simulation. Combustion Science and Technology, 2021, 193, 142-166.	1.2	8
134	Auto-ignition and knocking characteristics of gasoline/ethanol blends in confined space with turbulence. Fuel, 2021, 294, 120559.	3.4	8
135	Effects of the injection timing on knock and combustion characteristics in dual-fuel dual-injection engines. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2020, 234, 2578-2591.	1.1	7
136	Hotspot auto-ignition induced detonation development: emphasis on energy density and chemical reactivity. Combustion Theory and Modelling, 2022, 26, 179-200.	1.0	7
137	A molecular dynamic study of evaporation/supercritical-transition inter-relationship and multicomponents interaction for alkane/alcohol droplets. Physics of Fluids, 2022, 34, .	1.6	7
138	Effects of different injection strategies on mixing, combustion and emission behavior of gasoline compression ignition (GCI) engines. Fuel, 2022, 317, 123486.	3.4	7
139	Study of combustion noise mechanism under accelerating operation of a naturally aspirated diesel engine. International Journal of Vehicle Design, 2007, 45, 33.	0.1	6
140	Hydrogen addition effect on a reaction front propagation in NTC-affected auto-igniting mixture. International Journal of Hydrogen Energy, 2015, 40, 12522-12530.	3.8	6
141	Numerical study on transition of hydrogen/air flame triggered by auto-ignition under effect of pressure wave in an enclosed space. International Journal of Hydrogen Energy, 2017, 42, 16877-16886.	3.8	6
142	Experimental Investigation of Turbulent Flame Propagation and Pressure Oscillation in a Constant Volume Chamber Equipped With an Orifice Plate. Combustion Science and Technology, 0, , 1-17.	1.2	6
143	Effects of Exhaust Gas Recirculation on Knock Intensity of a Downsized Gasoline Spark Ignition Engine. Journal of Energy Resources Technology, Transactions of the ASME, 2019, 141, .	1.4	6
144	Direct Numerical Simulation of Flame Propagation and Deflagration to Detonation Transition in Confined Space with Different Perforated Plate Positions. Combustion Science and Technology, 2020, , 1-28.	1.2	6

#	Article	IF	CITATIONS
145	Analysis of Diesel Knock for High-Altitude Heavy-Duty Engines Using Optical Rapid Compression Machines. Energies, 2020, 13, 3080.	1.6	6
146	Effect of Temperature Conditions on Flame Evolutions of Turbulent Jet Ignition. Energies, 2021, 14, 2226.	1.6	6
147	Effects of fluctuations in concentration on detonation propagation. Physics of Fluids, 0, , .	1.6	6
148	Pressure oscillation with destructive effect of flame propagation of a stoichiometric hydrogen-air mixture in a confined space. Journal of Hazardous Materials, 2018, 344, 1025-1033.	6.5	5
149	Application of cell agglomeration algorithm coupled with dynamic adaptive chemistry for transient engine simulation of diesel fuel. Fuel, 2018, 234, 1313-1321.	3.4	5
150	Effect of Fuel Properties on Knocking Combustion in an Optical Rapid Compression Machine. Energy & Fuels, 2019, 33, 12714-12722.	2.5	5
151	Mechanism of Methane Addition Affects the Ignition Process of n-heptane under Dual Fuel Engine-Like Conditions. Journal of Thermal Science, 2020, 29, 1638-1654.	0.9	5
152	Numerical Simulations on Autoignition Propagation Modes under Reciprocating Engine-relevant Conditions. Combustion Science and Technology, 2021, 193, 2241-2258.	1.2	5
153	Cycle-resolved visualization of lubricant-induced abnormal combustion in an optical natural gas/hydrogen engine. Fuel, 2022, 321, 124053.	3.4	5
154	Optical study of oxygen enrichment on methane combustion characteristics under high compression-ratio conditions. Fuel, 2022, 328, 125251.	3.4	5
155	Effects of intake conditions and octane sensitivity on GCI combustion at early injection timings. Fuel, 2021, 298, 120803.	3.4	4
156	New Insights into Abnormal Combustion Phenomena Induced by Diesel Spray-Wall Impingement under Engine-Relevant Conditions. Energies, 2022, 15, 2941.	1.6	4
157	Experimental Study on the Burning Rate of Methane and PRF95 Dual Fuels. SAE International Journal of Engines, 0, 9, 1117-1129.	0.4	3
158	Experimental Investigation on the Laminar Burning Velocities and Markstein Lengths of Methane and PRF95 Dual Fuels. Energy & Fuels, 2016, 30, 6777-6789.	2.5	3
159	The influence of intermediate species on the combustion process of n-dodecane flame. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2020, 234, 334-348.	1.1	3
160	Effect of Injection Strategy on the Combustion and Knock in a Downsized Gasoline Engine with Large Eddy Simulation. , 0, , .		3
161	Numerical study of turbulent jet ignition process at different injection strategies in a single-cylinder engine with active pre-chamber. Combustion Science and Technology, 2024, 196, 455-479.	1.2	3
162	Simulation research on the effect of cooled EGR, supercharging and compression ratio on downsized SI engine knock. Chinese Journal of Mechanical Engineering (English Edition), 2013, 26, 341-350.	1.9	2

#	ARTICLE	IF	CITATIONS
163	Thermodynamic Analysis of a Novel Combined Power and Cooling Cycle Driven by the Exhaust Heat Form a Diesel Engine. SAE International Journal of Engines, 0, 6, 766-776.	0.4	2
164	Combustion Simulations under IC Engine-Relevant Conditions Using Dynamic Adaptive Multi-Zone Method. Combustion Science and Technology, 2017, 189, 2242-2265.	1.2	2
165	Effect of improved accelerating method on efficient chemistry calculations in diesel engine. International Journal of Engine Research, 2018, 19, 839-853.	1.4	2
166	Strong knocking characteristics under compression ignition conditions with high pressures. Combustion Science and Technology, 2018, 190, 1786-1803.	1.2	2
167	On pre-ignition heat release of fuels with various octane sensitivities under compression ignition conditions. Applied Thermal Engineering, 2019, 159, 113953.	3.0	2
168	Numerical investigations on turbulent jet ignition with gasoline as an auxiliary fuel in rapid compression machines. Combustion Science and Technology, 0, , 1-20.	1.2	2
169	Experimental Study on Combustion Characteristics and Pressure Oscillations of Turbulent Jet Ignition in a Confined Space. Combustion Science and Technology, 0, , 1-24.	1.2	2
170	Effects of thermal stratification and turbulent intensity on auto-ignition and combustion mode transition. Combustion and Flame, 2022, 244, 112273.	2.8	2
171	Research on the Influence of Bench Installation Conditions on Simulation of Engine Main Bearing Load. SAE International Journal of Engines, 2009, 2, 1885-1890.	0.4	1
172	The pressure wave equation in KIVA during combustion process of internal combustion engines. International Journal of Vehicle Design, 2012, 59, 289.	0.1	1
173	Chemical kinetic modeling for the effects of methyl ester moiety in biodiesel on PAHs and NO x formation. Transactions of Tianjin University, 2013, 19, 168-173.	3.3	1
174	Effects of n-heptane concentration on ignition characteristics and flame propagation of dual fuel combustion under engine-like conditions. Fuel, 2021, 294, 120447.	3.4	1
175	Dynamic response of functional virtual prototyping of motorcycle under combined excitations. Transactions of Tianjin University, 2013, 19, 279-286.	3.3	0
176	Forced turbulence affected auto-ignition and combustion modes under engine-relevant conditions. Applications in Energy and Combustion Science, 2020, 1-4, 100015.	0.9	0
177	End-Gas Autoignition Mechanism in a Downsized Spark-Ignition Engine: Effect of Inhomogeneity. Combustion Science and Technology, 0, , 1-28.	1.2	0
178	Optical Experiments on Auto-Ignition Modes in a Turbulent Field under Engine-Relevant Conditions. Combustion Science and Technology, 0, , 1-19.	1.2	0
179	Effect of active ignition on the end-gas autoignition with detonation combustion in confined space. Fuel, 2022, 325, 124909.	3.4	0