Jochen Schwenk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8935719/publications.pdf

Version: 2024-02-01

567281 839539 18 1,998 15 18 citations h-index g-index papers 21 21 21 2487 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	High-Resolution Proteomics Unravel Architecture and Molecular Diversity of Native AMPA Receptor Complexes. Neuron, 2012, 74, 621-633.	8.1	389
2	Functional Proteomics Identify Cornichon Proteins as Auxiliary Subunits of AMPA Receptors. Science, 2009, 323, 1313-1319.	12.6	340
3	Native GABAB receptors are heteromultimers with a family of auxiliary subunits. Nature, 2010, 465, 231-235.	27.8	286
4	Regional Diversity and Developmental Dynamics of the AMPA-Receptor Proteome in the Mammalian Brain. Neuron, 2014, 84, 41-54.	8.1	224
5	Modular composition and dynamics of native GABAB receptors identified by high-resolution proteomics. Nature Neuroscience, 2016, 19, 233-242.	14.8	120
6	Auxiliary GABAB Receptor Subunits Uncouple G Protein $\hat{l}^2\hat{l}^3$ Subunits from Effector Channels to Induce Desensitization. Neuron, 2014, 82, 1032-1044.	8.1	92
7	Complex formation of APP with GABAB receptors links axonal trafficking to amyloidogenic processing. Nature Communications, 2019, 10, 1331.	12.8	92
8	Carbonic anhydrase-related protein CA10 is an evolutionarily conserved pan-neurexin ligand. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E1253-E1262.	7.1	81
9	Anti-nociceptive action of peripheral mu-opioid receptors by G-beta-gamma protein-mediated inhibition of TRPM3 channels. ELife, 2017, 6, .	6.0	80
10	AMPA-receptor specific biogenesis complexes control synaptic transmission and intellectual ability. Nature Communications, 2017, 8, 15910.	12.8	77
11	An ER Assembly Line of AMPA-Receptors Controls Excitatory Neurotransmission and Its Plasticity. Neuron, 2019, 104, 680-692.e9.	8.1	59
12	Cornichon2 Dictates the Time Course of Excitatory Transmission at Individual Hippocampal Synapses. Neuron, 2014, 82, 848-858.	8.1	50
13	Getting in Touch with Candida albicans: The Cell Wall of a Fungal Pathogen. Current Drug Targets, 2006, 7, 505-512.	2.1	28
14	Deorphanizing FAM19A proteins as pan-neurexin ligands with an unusual biosynthetic binding mechanism. Journal of Cell Biology, 2020, 219, .	5.2	26
15	NMR Analysis of KChIP4a Reveals Structural Basis for Control of Surface Expression of Kv4 Channel Complexes. Journal of Biological Chemistry, 2008, 283, 18937-18946.	3.4	19
16	Membrane palmitoylated protein 2 is a synaptic scaffold protein required for synaptic SK2-containing channel function. ELife, 2016, 5, .	6.0	17
17	Building of AMPAâ€type glutamate receptors in the endoplasmic reticulum and its implication for excitatory neurotransmission. Journal of Physiology, 2021, 599, 2639-2653.	2.9	12
18	Folding unpredicted. Science, 2019, 366, 1194-1195.	12.6	3