Ahmet Yakut

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8935615/publications.pdf Version: 2024-02-01

Δημετ Υλκιιτ

#	Article	IF	CITATIONS
1	Performance of structures in İzmir after the Samos island earthquake. Bulletin of Earthquake Engineering, 2022, 20, 7793-7818.	4.1	32
2	ldentifying buildings with high collapse risk based on samos earthquake damage inventory in İzmir. Bulletin of Earthquake Engineering, 2022, 20, 7853-7872.	4.1	7
3	Seismic performance of mid-rise reinforced concrete buildings in Izmir Bayrakli after the 2020 Samos earthquake. Engineering Failure Analysis, 2022, 137, 106277.	4.0	17
4	Comparison of real and simulated records using ground motion intensity measures. Soil Dynamics and Earthquake Engineering, 2021, 147, 106796.	3.8	8
5	An approximate procedure for estimating the member demands in mid-rise reinforced concrete buildings. Bulletin of Earthquake Engineering, 2020, 18, 6715-6734.	4.1	1
6	Evaluation of seismic performance measures for MDOF RC structures subjected to simulated and real ground motions. MATEC Web of Conferences, 2020, 323, 02003.	0.2	0
7	Analysis of a multi-story reinforced concrete residential building damaged under its self-weight. Engineering Failure Analysis, 2019, 98, 38-48.	4.0	9
8	Seismic behavior and improvement of autoclaved aerated concrete infill walls. Engineering Structures, 2019, 193, 68-81.	5.3	40
9	Seismic damage assessment based on regional synthetic ground motion dataset: a case study for Erzincan, Turkey. Natural Hazards, 2018, 92, 1371-1397.	3.4	24
10	Ground-motion characterization for the probabilistic seismic hazard assessment in Turkey. Bulletin of Earthquake Engineering, 2018, 16, 3439-3463.	4.1	40
11	Seismic response of autoclaved aerated concrete masonry infill walls under inâ€plane and outâ€ofâ€plane seismic demands. Ce/Papers, 2018, 2, 241-245.	0.3	3
12	In Situ Lateral Load Testing of a Two-Story Solid Clay Brick Masonry Building. Journal of Performance of Constructed Facilities, 2018, 32, 04018058.	2.0	5
13	Lateral load testing of an existing two story masonry building up to near collapse. Bulletin of Earthquake Engineering, 2017, 15, 3365-3383.	4.1	14
14	Seismic Performance Assessment of Masonry Buildings Using In Situ Material Properties. Journal of Performance of Constructed Facilities, 2017, 31, .	2.0	4
15	Assessment of alternative simulation techniques in nonlinear time history analyses of multi-story frame buildings: A case study. Soil Dynamics and Earthquake Engineering, 2017, 98, 38-53.	3.8	16
16	Assessment of Simulated Ground Motions in Earthquake Engineering Practice: A Case Study for Duzce (Turkey). Pure and Applied Geophysics, 2017, 174, 3589-3607.	1.9	19
17	A study on fragility analyses of masonry buildings in Erzincan (Turkey) utilizing simulated and real ground motion records. Procedia Engineering, 2017, 199, 188-193.	1.2	9
18	Vehicle effects on seismic response of a simpleâ€span bridge during shake tests. Earthquake Engineering and Structural Dynamics, 2015, 44, 889-905.	4.4	20

Анмет Үакит

#	Article	IF	CITATIONS
19	Provisions for the Seismic Risk Evaluation of Existing Reinforced Concrete Buildings in Turkey under the Urban Renewal Law. Earthquake Spectra, 2015, 31, 1353-1370.	3.1	9
20	Seismic Risk Prioritization and Retrofit Cost Evaluation of Code-Deficient RC Public Buildings in Turkey. Earthquake Spectra, 2015, 31, 601-614.	3.1	4
21	Seismic performance of gravity-load designed concrete frames infilled with low-strength masonry. Earthquake and Structures, 2015, 8, 19-35.	1.0	15
22	Deformation Limits for Structural Walls with Confined Boundaries. Earthquake Spectra, 2012, 28, 1019-1046.	3.1	19
23	Performance limits for structural walls: An analytical perspective. Engineering Structures, 2012, 43, 105-119.	5.3	25
24	Seismic risk prioritization of residential buildings in Istanbul. Earthquake Engineering and Structural Dynamics, 2012, 41, 1533-1547.	4.4	3
25	Analytical Fragility Curves for Ordinary Highway Bridges in Turkey. Earthquake Spectra, 2011, 27, 971-996.	3.1	73
26	Spectral Ground Motion Intensity Based on Capacity and Period Elongation. Journal of Structural Engineering, 2011, 137, 401-409.	3.4	39
27	Service Life Assessment of Existing Highway Bridges with No Planned Regular Inspections. Journal of Performance of Constructed Facilities, 2008, 22, 108-114.	2.0	23
28	Correlation of Deformation Demands with Ground Motion Intensity. Journal of Structural Engineering, 2008, 134, 1818-1828.	3.4	76
29	Capacity Related Properties of RC Frame Buildings in Turkey. Journal of Earthquake Engineering, 2008, 12, 265-272.	2.5	9
30	A Screening Procedure for Seismic Risk Assessment in Urban Building Stocks. Earthquake Spectra, 2007, 23, 441-458.	3.1	76
31	Vulnerability Assessment of Reinforced Concrete Moment Resisting Frame Buildings. Journal of Structural Engineering, 2007, 133, 576-586.	3.4	5
32	Component damage functions for reinforced concrete frame structures. Engineering Structures, 2007, 29, 2242-2253.	5.3	11
33	Numerical simulation of dynamic shear wall tests: A benchmark study. Computers and Structures, 2006, 84, 549-562.	4.4	27
34	Reply to: Discussion of "Re-examination of damage distribution in Adapazarı: Geotechnical considerations―[Engineering Structures 2005;27:1002–13]. Engineering Structures, 2006, 28, 468.	5.3	0
35	Seismic response assessment of a stiff structure. Earthquake Engineering and Structural Dynamics, 2006, 35, 737-759.	4.4	6
36	Seismic vulnerability assessment using regional empirical data. Earthquake Engineering and Structural Dynamics, 2006, 35, 1187-1202.	4.4	40

Анмет Үакит

#	Article	IF	CITATIONS
37	IN DEFENCE OF ZEYTINBURNU. , 2006, , 95-116.		3
38	Re-examination of damage distribution in Adapazarı: Structural considerations. Engineering Structures, 2005, 27, 990-1001.	5.3	37
39	Re-examination of damage distribution in Adapazarı: Geotechnical considerations. Engineering Structures, 2005, 27, 1002-1013.	5.3	27
40	Displacement-Based Fragility Functions for Low- and Mid-rise Ordinary Concrete Buildings. Earthquake Spectra, 2005, 21, 901-927.	3.1	110
41	Drift based damage functions for reinforced concrete columns. Computers and Structures, 2004, 82, 121-130.	4.4	45
42	Preliminary seismic performance assessment procedure for existing RC buildings. Engineering Structures, 2004, 26, 1447-1461.	5.3	72
43	Parameters Influencing Performance of Elastomeric Bearings at Low Temperatures. Journal of Structural Engineering, 2002, 128, 986-994.	3.4	50
44	Evaluation of Low-Temperature Test Methods for Elastomeric Bridge Bearings. Journal of Bridge Engineering, 2002, 7, 50-56.	2.9	13
45	Evaluation of Elastomeric Bearing Performance at Low Temperatures. Journal of Structural Engineering, 2002, 128, 995-1002.	3.4	14