
Robert B Levy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8935574/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Improved NK Cell Recovery Following Use of PTCy or Treg Expanded Donors in Experimental MHC-Matched Allogeneic HSCT. Transplantation and Cellular Therapy, 2022, 28, 303.e1-303.e7.	1.2	2
2	Leber Hereditary Optic Neuropathy Gene Therapy: Adverse Events and Visual Acuity Results of All Patient Groups. American Journal of Ophthalmology, 2022, 241, 262-271.	3.3	20
3	Analyses and Correlation of Pathologic and Ocular Cutaneous Changes in Murine Graft versus Host Disease. International Journal of Molecular Sciences, 2022, 23, 184.	4.1	4
4	Use of Post-transplant Cyclophosphamide Treatment to Build a Tolerance Platform to Prevent Liquid and Solid Organ Allograft Rejection. Frontiers in Immunology, 2021, 12, 636789.	4.8	3
5	STING and transplantation: can targeting this pathway improve outcomes?. Blood, 2021, 137, 1871-1878.	1.4	2
6	Understanding Immune Responses to Surgical Transplant Procedures in Stevens Johnsons Syndrome Patients. Frontiers in Medicine, 2021, 8, 656998.	2.6	3
7	STING differentially regulates experimental GVHD mediated by CD8 versus CD4 T cell subsets. Science Translational Medicine, 2020, 12, .	12.4	15
8	Medical Treatment Can Unintentionally Alter the Regulatory T-Cell Compartment in Patients with Widespread Pathophysiologic Conditions. American Journal of Pathology, 2020, 190, 2000-2012.	3.8	6
9	Modeling Chronic Graft-versus-Host Disease in MHC-Matched Mouse Strains: Genetics, Graft Composition, and Tissue Targets. Biology of Blood and Marrow Transplantation, 2019, 25, 2338-2349.	2.0	11
10	The promise of CD4 ⁺ FoxP3 ⁺ regulatory T-cell manipulation <i>in vivo</i> : applications for allogeneic hematopoietic stem cell transplantation. Haematologica, 2019, 104, 1309-1321.	3.5	16
11	The Innate Immune Sensor Sting Promotes Donor CD8+ T Cell Activation and Recipient APC Death Early after Preclinical Allogeneic Hematopoietic Stem Cell Transplantation. Blood, 2019, 134, 3202-3202.	1.4	0
12	Multiple Pathways Targeting CD25 or TNFRSF25 Affect CD4+FoxP3+ Regulatory T Cell Phenotype and Suppressive Function. Blood, 2019, 134, 4430-4430.	1.4	0
13	Very Low Numbers of CD4+ FoxP3+ Tregs Expanded in Donors via TL1A-Ig and Low-Dose IL-2 Exhibit a Distinct Activation/Functional Profile and Suppress GVHD in a Preclinical Model. Biology of Blood and Marrow Transplantation, 2018, 24, 1788-1794.	2.0	23
14	BET Bromodomain Inhibitors Which Permit Treg Function Enable a Combinatorial Strategy to Suppress GVHD in Pre-clinical Allogeneic HSCT. Frontiers in Immunology, 2018, 9, 3104.	4.8	20
15	Superior immune reconstitution using Treg-expanded donor cells versus PTCy treatment in preclinical HSCT models. JCI Insight, 2018, 3, .	5.0	15
16	Marked in Vivo Donor Regulatory T Cell Expansion via Interleukin-2 and TL1A-Ig Stimulation Ameliorates Graft-versus-Host Disease but Preserves Graft-versus-Leukemia in Recipients after Hematopoietic Stem Cell Transplantation. Biology of Blood and Marrow Transplantation, 2017, 23, 757-766.	2.0	45
17	Novel Scoring Criteria for the Evaluation of Ocular Graft-versus-Host Disease in a Preclinical Allogeneic Hematopoietic Stem Cell Transplantation Animal Model. Biology of Blood and Marrow Transplantation, 2016, 22, 1765-1772.	2.0	26
18	Recruitment of Donor T Cells to the Eyes During Ocular GVHD in Recipients of MHC-Matched Allogeneic Hematopoietic Stem Cell Transplants. , 2015, 56, 2348.		47

Robert B Levy

#	Article	IF	CITATIONS
19	Novel Multi-Target Immunosuppressive Approach for Treatment of Severe Aplastic Anemia. Blood, 2015, 126, 3611-3611.	1.4	1
20	Targeting the IL-2/CD25 and TL1A/TNFRSF25 Pathways: A New Approach to Markedly Expand Donor Tregs in Multiple Compartments Leads to in Situ Immune Regulation. Blood, 2015, 126, 4281-4281.	1.4	0
21	Heat shock protein vaccination and directed IL-2 therapy amplify tumor immunity rapidly following bone marrow transplantation in mice. Blood, 2014, 123, 3045-3055.	1.4	10
22	Donor CD4+ Foxp3+ regulatory T cells are necessary for posttransplantation cyclophosphamide-mediated protection against GVHD in mice. Blood, 2014, 124, 2131-2141.	1.4	162
23	Antigen and Lymphopenia-Driven Donor T Cells Are Differentially Diminished by Post-Transplantation Administration of Cyclophosphamide after Hematopoietic Cell Transplantation. Biology of Blood and Marrow Transplantation, 2013, 19, 1430-1438.	2.0	74
24	The allure and peril of hematopoietic stem cell transplantation: overcoming immune challenges to improve success. Immunologic Research, 2013, 57, 125-139.	2.9	11
25	Recruitment Of T Cells and Macrophages To The Eyes In Recipients Of Allogeneic Hematopoietic Stem Cell Transplants Correlate With Inflammatory Cytokine Presence In Ocular Gvhd. Blood, 2013, 122, 2012-2012.	1.4	Ο
26	Expansion of a restricted residual host T _{reg} â€cell repertoire is dependent on ILâ€2 following experimental autologous hematopoietic stem transplantation. European Journal of Immunology, 2011, 41, 3467-3478.	2.9	12
27	Post-Transplant Cyclophosphamide (PTC) Gvhd Prophylaxis: Kinetics of Proliferation of Donor T Cells Affects Susceptibility to PTC Administration,. Blood, 2011, 118, 4029-4029.	1.4	0
28	Hematopoietic progenitor cell regulation by CD4+CD25+ T cells. Blood, 2010, 115, 4934-4943.	1.4	38
29	Therapeutic Treg expansion in mice by TNFRSF25 prevents allergic lung inflammation. Journal of Clinical Investigation, 2010, 120, 3629-3640.	8.2	143
30	Post-Transplant Cyclophosphamide Treatment Ameliorates Experimental Gvhd While Permitting Lymphopenic Expansion of Non-Host Reactive Donor T Cells Blood, 2010, 116, 3751-3751.	1.4	16
31	In Situ Activation and Expansion of Host Tregs: A New Approach to Enhance Donor Chimerism and Stable Engraftment in Major Histocompatibility Complex-Matched Allogeneic Hematopoietic Cell Transplantation. Biology of Blood and Marrow Transplantation, 2009, 15, 785-794.	2.0	22
32	Targeting Treg Cells In Situ: Emerging Expansion Strategies for (CD4+CD25+) Regulatory T Cells. Biology of Blood and Marrow Transplantation, 2009, 15, 1239-1243.	2.0	12
33	Host CD4+CD25+ T cells can expand and comprise a major component of the Treg compartment after experimental HCT. Blood, 2009, 113, 733-743.	1.4	46
34	IL-2 + Anti-IL2 Complex in Situ Stimulation of Host Tregs Combined with Absence of Donor B7.1 / B7.2: A Novel Approach to Facilitate Chimerism in RIC MHC-Matched Miha-Mismatched BMT Recipients Blood, 2009, 114, 2441-2441.	1.4	0
35	Facilitating Engraftment After MHC-Matched, Allogeneic BMT by IL-2 / Anti IL-2 Complex Treatment Requires Targeting CD25 On, and Activation in Situ of, Residual CD4 Tregs Blood, 2009, 114, 66-66.	1.4	0
36	Cytolytically Defective Tregs Can Prevent Spontaneous Autoimmune Disease and Gvhd, but Fail to Suppress Autochthonous Lymphoproliferation. Blood, 2008, 112, 3518-3518.	1.4	0

Robert B Levy

#	Article	IF	CITATIONS
37	Administration of IL-2-Anti-IL2mAb Complex Post-Allogeneic HCT: a New Approach to Facilitate Rapid and Stable Hematopoietic Chimerism Following Reduced Intensity Conditioning and Experimental HCT. Blood, 2008, 112, 70-70.	1.4	2
38	Transplant conditions determine the contribution of homeostatically expanded donor CD8 memory cells to host lymphoid reconstitution following syngeneic HCT. Experimental Hematology, 2007, 35, 1303-1315.	0.4	3
39	Surviving Host CD4+CD25+Foxp3+ Cells Following Ablative Conditioning Expand and Comprise the Major Component of the Treg Compartment during the Lymphoid Reconstitution Period Following HCT Blood, 2007, 110, 65-65.	1.4	1
40	Pre-Transplant Infusion of Donor CD4+ CD25+ T Cells Suppresses Host Anti-Donor MiHA-Specific CD8 T Cells and Facilitates Stable Mixed Chimerism Following MHC-Matched Allogeneic Marrow Transplant Blood, 2007, 110, 3254-3254.	1.4	1
41	CD4+CD25+Foxp3+ Regulatory T Cell Function Outside the Immune System: Differential Regulation of Hematopoietic Progenitor Cell Populations Blood, 2007, 110, 64-64.	1.4	0
42	Identification of a Single MiHA Specificity That Induces Resistance to MHC-Matched Allogeneic HCT Blood, 2006, 108, 3216-3216.	1.4	7
43	Transplanted Donor CD8 TN Convert to TM in Severely Lymphopenic HCT Recipients and Are Distinguishable from Bona Fide Donor CD8 TM Blood, 2006, 108, 3214-3214.	1.4	0
44	Donor CD4+CD25+ T cells promote engraftment and tolerance following MHC-mismatched hematopoietic cell transplantation. Blood, 2005, 105, 1828-1836.	1.4	156
45	Contrasting Effects of Post-Transplant Lymphopenia on Proliferation and Degranulation in Antigen-Specific CD8 Memory T Cells Blood, 2005, 106, 66-66.	1.4	1
46	Memory Effector Cells but Not Effector Cells Derived from Naive T Cells Can Utilize a Non-Perforin and Non-FasL Pathway To Inhibit Allogeneic Progenitor Cell Function Ex-Vivo Blood, 2005, 106, 3029-3029.	1.4	0
47	CD4+CD25+ T Cells Can Inhibit CD8 T Cell Mediated GVHD: Requirement for In Vivo Recognition of Allogeneic Host MHC Class II Antigens Blood, 2005, 106, 1307-1307.	1.4	0
48	Antigen-Specific CD8+ Memory T Cells Survive, Function and Populate the Host Marrow Compartment Following Ablative TBI and Allogeneic BMT Blood, 2005, 106, 1268-1268.	1.4	6
49	Suppression of NK Cell-Mediated Bone Marrow Cell Rejection by CD4+CD25+ Regulatory T Cells: Linkage of Adaptive to Innate Responses Blood, 2005, 106, 2195-2195.	1.4	0
50	Recipient Tregs: Can They Be Exploited for Successful Hematopoietic Stem Cell Transplant Outcomes?. Frontiers in Immunology, 0, 13, .	4.8	2