Henrique L. Gomes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8935490/publications.pdf

Version: 2024-02-01

236612 214527 2,619 116 25 47 citations h-index g-index papers 120 120 120 3227 docs citations times ranked citing authors all docs

#	Article	lF	CITATIONS
1	(Invited) Electro-Optical Techniques to Measure Traps in Organic-Based Devices: Why the Methods Originally Developed for Silicon-Based Devices Must be Modified. ECS Meeting Abstracts, 2021, MA2021-01, 1045-1045.	0.0	O
2	High Electrical Anisotropic Multilayered Selfâ€Assembled Organic Films Based on Graphene Oxide and PEDOT:PSS. Advanced Electronic Materials, 2021, 7, 2100255.	2.6	3
3	High Electrical Anisotropic Multilayered Selfâ€Assembled Organic Films Based on Graphene Oxide and PEDOT:PSS (Adv. Electron. Mater. 8/2021). Advanced Electronic Materials, 2021, 7, 2170033.	2.6	O
4	Resistive switching of silicon-silver thin film devices in flexible substrates. Nanotechnology, 2020, 31, 135702.	1.3	5
5	Neuromorphic Organic Devices that Specifically Discriminate Dopamine from Its Metabolites by Nonspecific Interactions. Advanced Functional Materials, 2020, 30, 2002141.	7.8	21
6	Neuromorphic Organic Devices: Neuromorphic Organic Devices that Specifically Discriminate Dopamine from Its Metabolites by Nonspecific Interactions (Adv. Funct. Mater. 28/2020). Advanced Functional Materials, 2020, 30, 2070187.	7.8	2
7	Ultra-low noise PEDOT:PSS electrodes on bacterial cellulose: A sensor to access bioelectrical signals in non-electrogenic cells. Organic Electronics, 2020, 85, 105882.	1.4	15
8	Cartilage acidic protein 1 promotes increased cell viability, cell proliferation and energy metabolism in primary human dermal fibroblasts. Biochimie, 2020, 171-172, 72-78.	1.3	14
9	Extracellular electrophysiological based sensor to monitor cancer cells cooperative migration and cell-cell connections. Biosensors and Bioelectronics, 2019, 145, 111708.	5.3	7
10	Ultra-Low Power Sensor Devices for Monitoring Physical Activity and Respiratory Frequency in Farmed Fish. Frontiers in Physiology, 2019, 10, 667.	1.3	32
11	Small signal analysis of MPCVD diamond Schottky diodes. Diamond and Related Materials, 2019, 93, 131-138.	1.8	8
12	Insight into the sensing mechanism of an impedance based electronic tongue for honey botanic origin discrimination. Sensors and Actuators B: Chemical, 2019, 285, 24-33.	4.0	27
13	Ultrasensitive bioelectronic devices based on conducting polymers for electrophysiology studies. Chemical Papers, 2018, 72, 1597-1603.	1.0	4
14	Transient electrical behavior of an electrode/electrolyte interface based on a surface micro-structured with gold mushroom shapes. Journal of Applied Physics, 2018, 124, .	1.1	2
15	Novel flexible inkjet-printed Metal-Insulator-Semiconductor organic diode employing silver electrodes. Organic Electronics, 2018, 62, 335-341.	1.4	13
16	Inkjet printed metal insulator semiconductor (MIS) diodes for organic and flexible electronic application. Flexible and Printed Electronics, 2017, 2, 015003.	1.5	19
17	Bioelectrical Signal Detection Using Conducting Polymer Electrodes and the Displacement Current Method. IEEE Sensors Journal, 2017, 17, 3961-3966.	2.4	15
18	Controlling the crack formation in inkjet-printed silver nanoparticle thin-films for high resolution patterning using intense pulsed light treatment. Nanotechnology, 2017, 28, 495301.	1.3	17

#	Article	IF	CITATIONS
19	Memristors Using Solution-Based IGZO Nanoparticles. ACS Omega, 2017, 2, 8366-8372.	1.6	38
20	The role of the electrode configuration on the electrical properties of small-molecule semiconductor thin-films. Organic Electronics, 2017, 49, 107-113.	1.4	17
21	Ultrasensitive gold micro-structured electrodes enabling the detection of extra-cellular long-lasting potentials in astrocytes populations. Scientific Reports, 2017, 7, 14284.	1.6	16
22	Extracellular Electrophysiological Measurements of Cooperative Signals in Astrocytes Populations. Frontiers in Neural Circuits, $2017,11,80.$	1.4	9
23	Extracellular electrical recording of pH-triggered bursts in C6 glioma cell populations. Science Advances, 2016, 2, e1600516.	4.7	22
24	Improving positive and negative bias illumination stress stability in parylene passivated IGZO transistors. Applied Physics Letters, $2016,109,109$	1.5	58
25	Electrochemically Gated Graphene Field-Effect Transistor for Extracellular Cell Signal Recording. IFIP Advances in Information and Communication Technology, 2016, , 558-564.	0.5	2
26	Whole organic electronic synapses for dopamine detection., 2016,,.		8
27	Performance assessment of polymer based electrodes for <i>in vitro</i> electrophysiological sensing: the role of the electrode impedance. Proceedings of SPIE, 2016, , .	0.8	3
28	An electrical method to measure low-frequency collective and synchronized cell activity using extracellular electrodes. Sensing and Bio-Sensing Research, 2016, 10, 1-8.	2.2	21
29	All-inkjet-printed thin-film transistors: manufacturing process reliability by root cause analysis. Scientific Reports, 2016, 6, 33490.	1.6	78
30	Electrochemical noise and impedance of Au electrode/electrolyte interfaces enabling extracellular detection of glioma cell populations. Scientific Reports, 2016, 6, 34843.	1.6	66
31	Up-scaling of the manufacturing of all-inkjet-printed organic thin-film transistors: Device performance and manufacturing yield of transistor arrays. Organic Electronics, 2016, 30, 237-246.	1.4	74
32	Unipolar resistive switching in metal oxide/organic semiconductor non-volatile memories as a critical phenomenon. Journal of Applied Physics, 2015, 118, .	1.1	10
33	Operational stability of solution based zinc tin oxide/SiO ₂ thin film transistors under gate bias stress. APL Materials, 2015, 3, 062804.	2.2	10
34	Potential up-scaling of inkjet-printed devices for logical circuits in flexible electronics. AIP Conference Proceedings, 2015, , .	0.3	15
35	Sudden death of organic light-emitting diodes. Organic Electronics, 2015, 20, 89-96.	1.4	9
36	Low frequency electric current noise in glioma cell populations. Journal of Materials Chemistry B, 2015, 3, 5035-5039.	2.9	14

#	Article	IF	CITATIONS
37	Charge trapping at the polymer-metal oxide interface as a first step in the electroforming of organic-inorganic memory diodes. Proceedings of SPIE, $2015, \ldots$	0.8	0
38	Electrical conduction of LiF interlayers in organic diodes. Journal of Applied Physics, 2015, 117, .	1.1	10
39	All-inkjet printed organic transistors: Dielectric surface passivation techniques for improved operational stability and lifetime. Microelectronics Reliability, 2015, 55, 1192-1195.	0.9	25
40	Lithium fluoride injection layers can form quasi-Ohmic contacts for both holes and electrons. Applied Physics Letters, 2014, 105, 123302.	1.5	17
41	Title: Inkjet-printed rectifying metal-insulator-semiconductor (MIS) diodes for flexible electronic applications. Materials Research Society Symposia Proceedings, 2014, 1628, 1.	0.1	1
42	Relation between the electroforming voltage in alkali halide-polymer diodes and the bandgap of the alkali halide. Applied Physics Letters, 2014, 105, 233502.	1.5	5
43	Low-frequency noise as a diagnostic tool for OLED reliability. , 2013, , .		11
44	Inkjet-Printed Organic Electronics: Operational Stability and Reliability Issues. ECS Transactions, 2013, 53, 1-10.	0.3	1
45	Reversible post-breakdown conduction in aluminum oxide-polymer capacitors. Applied Physics Letters, 2013, 102, 153509.	1.5	4
46	The role of internal structure in the anomalous switching dynamics of metal-oxide/polymer resistive random access memories. Journal of Applied Physics, 2013, 113, .	1.1	11
47	Low-Frequency Diffusion Noise in Resistive-Switching Memories Based on Metal–Oxide Polymer Structure. IEEE Transactions on Electron Devices, 2012, 59, 2483-2487.	1.6	16
48	Intrinsic and extrinsic resistive switching in a planar diode based on silver oxide nanoparticles. Thin Solid Films, 2012, 522, 407-411.	0.8	14
49	Dynamics of charge carrier trapping in NO2 sensors based on ZnO field-effect transistors. Sensors and Actuators B: Chemical, 2012, 171-172, 1172-1179.	4.0	18
50	Role of Hole Injection in Electroforming of LiF-Polymer Memory Diodes. Journal of Physical Chemistry C, 2012, 116, 12443-12447.	1.5	10
51	Electroforming Process in Metal-Oxide-Polymer Resistive Switching Memories. International Federation for Information Processing, 2012, , 527-534.	0.4	0
52	New Electronic Memory Device Concepts Based on Metal Oxide-Polymer Nanostructures Planer Diodes. International Federation for Information Processing, 2012, , 521-526.	0.4	0
53	Dynamic Behavior of Resistive Random Access Memories (RRAMS) Based on Plastic Semiconductor. International Federation for Information Processing, 2012, , 535-540.	0.4	1
54	Anomalous temperature dependence of the current in a metal-oxide-polymer resistive switching diode. Journal Physics D: Applied Physics, 2011, 44, 025103.	1.3	9

#	Article	IF	Citations
55	Switching speed in Resistive Random Access Memories (RRAMS) based on plastic semiconductor. Materials Research Society Symposia Proceedings, 2011, 1337, 27.	0.1	O
56	Doping Distribution Of An Operating Organic Light-Emitting Diode: A Raman Map Analysis. , 2011, , .		0
57	Non-volatile memory device using a polymer modified nanocrystal. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2011, 176, 1552-1555.	1.7	3
58	Opto-electronic characterization of electron traps upon forming polymer oxide memory diodes. Applied Physics Letters, 2011, 99, .	1.5	13
59	Planar Non-Volatile Memory based on Metal Nanoparticles. Materials Research Society Symposia Proceedings, 2011, 1337, 145.	0.1	1
60	Electrical properties of thin-films wide-band gap semiconductor TiO2prepared by CVD. Physica Status Solidi C: Current Topics in Solid State Physics, 2010, 7, NA-NA.	0.8	2
61	Trapping of electrons in metal oxide-polymer memory diodes in the initial stage of electroforming. Applied Physics Letters, 2010, 97, .	1.5	17
62	Confocal Scanning Raman Spectroscopy (CSRS) Of An Operating Organic Light-Emitting Diode. , 2010, , .		0
63	Strategies to Optimize Biosensors Based on Impedance Spectroscopy to Detect Phytic Acid Using Layer-by-Layer Films. Analytical Chemistry, 2010, 82, 3239-3246.	3.2	24
64	Resistive switching in nanostructured thin films. Applied Physics Letters, 2009, 94, .	1.5	25
65	Magnetic and transport properties of diluted granular multilayers. Journal of Applied Physics, 2009, 106, 113910.	1.1	5
66	Gate-bias stress in amorphous oxide semiconductors thin-film transistors. Applied Physics Letters, 2009, 95, .	1.5	213
67	Ultralow Power Microfuses for Writeâ€Once Readâ€Many Organic Memory Elements. Advanced Materials, 2008, 20, 3750-3753.	11.1	31
68	Switching in polymeric resistance random-access memories (RRAMS). Organic Electronics, 2008, 9, 119-128.	1.4	36
69	Spatially-resolved photocapacitance measurements to study defects in a-Si:H based p–i–n particle detectors. Thin Solid Films, 2008, 516, 5118-5121.	0.8	8
70	Determining carrier mobility with a metal–insulator–semiconductor structure. Organic Electronics, 2008, 9, 735-739.	1.4	15
71	Switching dynamics in non-volatile polymer memories. Organic Electronics, 2008, 9, 829-833.	1.4	13
72	Photocapacitance measurements in irradiated a-Si:H based detectors. Journal of Non-Crystalline Solids, 2008, 354, 2176-2180.	1.5	0

#	Article	IF	CITATIONS
73	Study of trap states in zinc oxide (ZnO) thin films for electronic applications. Journal of Non-Crystalline Solids, 2008, 354, 2519-2522.	1.5	20
74	Modeling electrical characteristics of thin-film field-effect transistors. Synthetic Metals, 2008, 158, 473-478.	2.1	3
75	Voltage- and light-induced hysteresis effects at the high-k dielectric—poly(3-hexylthiophene) interface. Applied Physics Letters, 2007, 90, 103513.	1.5	18
76	Reproducible resistive switching in nonvolatile organic memories. Applied Physics Letters, 2007, 91, .	1.5	126
77	Dynamics of Threshold Voltage Shifts in Organic and Amorphous Silicon Fieldâ€Effect Transistors. Advanced Materials, 2007, 19, 2785-2789.	11.1	223
78	Metal contacts in thin-film transistors. Organic Electronics, 2007, 8, 300-304.	1.4	10
79	Detection of Chloroform with a Sensor Array Consisting of Electrochemically Deposited Polythiophenes Films: Processes Governing the Electrical Response. Sensor Letters, 2007, 5, 374-379.	0.4	8
80	The effect of water related traps on the reliability of organic based transistors. Journal of Non-Crystalline Solids, 2006, 352, 1761-1764.	1.5	12
81	Modeling electrical characteristics of thin-film field-effect transistors. Synthetic Metals, 2006, 156, 1316-1326.	2.1	25
82	Modeling electrical characteristics of thin-film field-effect transistors. Synthetic Metals, 2006, 156, 1305-1315.	2.1	21
83	Thin-film field-effect transistors: The effects of traps on the bias and temperature dependence of field-effect mobility, including the Meyer–Neldel rule. Organic Electronics, 2006, 7, 592-599.	1.4	28
84	Organic Materials for Active Layers in Transistors: Study of the Electrical Stability Properties. Materials Science Forum, 2006, 514-516, 33-37.	0.3	1
85	Electrical instabilities in organic semiconductors caused by trapped supercooled water. Applied Physics Letters, 2006, 88, 082101.	1.5	85
86	Meta-stability effects in organic based transistors. , 2005, 5940, 112.		0
87	Trap states as an explanation for the Meyer–Neldel rule in semiconductors. Organic Electronics, 2005, 6, 137-141.	1.4	28
88	Electrical characterization of organic based transistors: stability issues. Polymers for Advanced Technologies, 2005, 16, 227-231.	1.6	48
89	Electronic transport in field-effect transistors of sexithiophene. Journal of Applied Physics, 2004, 96, 5277-5283.	1.1	74
90	Bias-induced threshold voltages shifts in thin-film organic transistors. Applied Physics Letters, 2004, 84, 3184-3186.	1.5	189

#	Article	IF	Citations
91	Electrical Characterization of Vacuum Deposited and Solution Processed DH4T Thin Film Transistors. Materials Research Society Symposia Proceedings, 2003, 771, 1031.	0.1	3
92	Interface state mapping in a Schottky barrier of the organic semiconductor terrylene. Organic Electronics, 2002, 3, 43-51.	1.4	50
93	Electrical AC behaviour of MPCVD diamond Schottky diodes. Diamond and Related Materials, 2001, 10, 615-619.	1.8	12
94	Electrical characterization of pn-junctions of PPV and silicon. Synthetic Metals, 2001, 121, 1535-1536.	2.1	1
95	Electrical characterization of CVD diamond–n+ silicon junctions. Diamond and Related Materials, 2001, 10, 858-862.	1.8	16
96	Minority-carrier effects in poly-phenylenevinylene as studied by electrical characterization. Journal of Applied Physics, 2001, 89, 1713.	1.1	22
97	Electronic levels in MEH-PPV. Synthetic Metals, 2000, 111-112, 535-537.	2.1	25
98	UV and visible photoconductivity of undoped diamond films: morphology and related electrical transport phenomena. Diamond and Related Materials, 2000, 9, 1621-1625.	1.8	2
99	Microelectrical characterisation of diamond films: an attempt to understand the structural influence on electrical transport phenomena. Diamond and Related Materials, 2000, 9, 1061-1065.	1.8	13
100	Analysis of deep levels in a phenylenevinylene polymer by transient capacitance methods. Applied Physics Letters, 1999, 74, 1144-1146.	1.5	44
101	Determination of deep and shallow levels in conjugated polymers by electrical methods. Physica B: Condensed Matter, 1999, 273-274, 923-926.	1.3	14
102	Interface Properties and Capacitance–Voltage Behaviour of Diamond Devices Prepared by Microwave-Assisted CVD. Physica Status Solidi A, 1999, 174, 165-170.	1.7	12
103	Photocurrents in P3MeT Schottky barrier diodes. Synthetic Metals, 1999, 101, 431-432.	2.1	3
104	Electrical study of impurity states in conjugated polymers. Synthetic Metals, 1999, 101, 496-497.	2.1	3
105	Influence of the metal center on the morphology of coordination compounds thin films. Synthetic Metals, 1999, 101, 140-141.	2.1	10
106	Photoconductivity and electrical properties of diamond films grown by MPCVD. Diamond and Related Materials, 1998, 7, 892-898.	1.8	5
107	Electrical Characterization of Semiconducting Polymers. Acta Physica Polonica A, 1998, 94, 545-548.	0.2	2
108	Study of Defects in Diamond Films by Electrical Measurements. Materials Science Forum, 1997, 258-263, 793-798.	0.3	1

#	Article	IF	CITATIONS
109	DLTS investigation of acceptor states in P3MeT Schottky barrier diodes. Synthetic Metals, 1997, 85, 1341-1342.	2.1	11
110	Influence of Fabrication Conditions on the Electrical Behaviour of Polymer Schottky Diodes. Synthetic Metals, 1997, 85, 1351-1352.	2.1	4
111	Electrical characterization of the rectifying contact between aluminium and electrodeposited poly(3-methylthiophene). Journal Physics D: Applied Physics, 1995, 28, 2554-2568.	1.3	90
112	Charge transport in poly(3-methylthiophene) schottky barrier diodes. Synthetic Metals, 1993, 57, 4076-4081.	2.1	16
113	Effect of oxygen on the electrical characteristics of field effect transistors formed from electrochemically deposited films of poly(3-methylthiophene). Journal Physics D: Applied Physics, 1991, 24, 2032-2038.	1.3	91
114	A microelectrode impedance method to measure interaction of cells. , 0, , .		4
115	Detection of explosive vapors using organic thin-film transistors. , 0, , .		11
116	Resistive Switching in Metal Oxide/Organic Semiconductor Nonvolatile Memories. , 0, , .		1