Motomu Tanaka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8935245/publications.pdf

Version: 2024-02-01

193 papers 6,322 citations

108046 37 h-index 97045 71 g-index

204 all docs

204 docs citations

times ranked

204

7386 citing authors

#	Article	IF	CITATIONS
1	De Novo Synthesis of Freeâ€Standing Flexible 2D Intercalated Nanofilm Uniform over Tens of cm ² . Advanced Materials, 2022, 34, e2106465.	11.1	3
2	Superiority of Mature Differentiated Cultured Human Corneal Endothelial Cell Injection Therapy for Corneal Endothelial Failure. American Journal of Ophthalmology, 2022, 237, 267-277.	1.7	16
3	One-Step Synthesis of Gelatin-Conjugated Supramolecular Hydrogels for Dynamic Regulation of Adhesion Contact and Morphology of Myoblasts. ACS Applied Polymer Materials, 2022, 4, 2595-2603.	2.0	5
4	CDK7/12/13 inhibition targets an oscillating leukemia stem cell network and synergizes with venetoclax in acute myeloid leukemia. EMBO Molecular Medicine, 2022, 14, e14990.	3.3	14
5	Glucose Metabolism and Aging of Hematopoietic Stem and Progenitor Cells. International Journal of Molecular Sciences, 2022, 23, 3028.	1.8	6
6	Loss of ASAP1 in the MMTV-PyMT model of luminal breast cancer activates AKT, accelerates tumorigenesis, and promotes metastasis. Cancer Letters, 2022, 533, 215600.	3.2	2
7	Id1 and Id3 Are Regulated Through Matrixâ€Assisted Autocrine BMP Signaling and Represent Therapeutic Targets in Melanoma. Advanced Therapeutics, 2021, 4, 2000065.	1.6	1
8	Physical Concepts Toward Cell–Material Integration. Fundamental Biomedical Technologies, 2021, , 199-215.	0.2	0
9	Critical role of lipid membranes in polarization and migration of cells: a biophysical view. Biophysical Reviews, 2021, 13, 123-138.	1.5	13
10	Dendronized oligoethylene glycols with phosphonate <i>tweezers</i> for cell-repellent coating of oxide surfaces: coarse-scale and nanoscopic interfacial forces. RSC Advances, 2021, 11, 17727-17733.	1.7	2
11	Extreme deformability of insect cell membranes is governed by phospholipid scrambling. Cell Reports, 2021, 35, 109219.	2.9	25
12	Functionalized supported membranes for quantifying adhesion of P.Âfalciparum-infected erythrocytes. Biophysical Journal, 2021, 120, 3315-3328.	0.2	9
13	Elevated Central Carbon Metabolism - a Hallmark for Senescent Cells in Aging Human Hematopoietic Stem Cell Compartment. Blood, 2021, 138, 1088-1088.	0.6	1
14	Interplay of Trans- and Cis-Interactions of Glycolipids in Membrane Adhesion. Frontiers in Molecular Biosciences, 2021, 8, 754654.	1.6	4
15	Influence of Semifluorinated Alkane Surface Domains on Phase Behavior and Linear and Nonlinear Viscoelasticity of Phospholipid Monolayers. Langmuir, 2020, 36, 781-788.	1.6	5
16	Mechanical stimulation of single cells by reversible host-guest interactions in 3D microscaffolds. Science Advances, 2020, 6, .	4.7	61
17	Ion-Mediated Cross-linking of Biopolymers Confined at Liquid/Liquid Interfaces Probed by In Situ High-Energy Grazing Incidence X-ray Photon Correlation Spectroscopy. Journal of Physical Chemistry B, 2020, 124, 8937-8942.	1.2	5
18	Force generation by a propagating wave of supramolecular nanofibers. Nature Communications, 2020, 11, 3541.	5.8	24

#	Article	IF	CITATIONS
19	Glycogen accumulation, central carbon metabolism, and aging of hematopoietic stem and progenitor cells. Scientific Reports, 2020, 10, 11597.	1.6	12
20	Specific localisation of ions in bacterial membranes unravels physical mechanism of effective bacteria killing by sanitiser. Scientific Reports, 2020, 10, 12302.	1.6	7
21	Editorial: Interfacial Water: A Physical Chemistry Perspective. Frontiers in Chemistry, 2020, 8, 760.	1.8	0
22	Stimuli-responsive hydrogels as a model of the dynamic cellular microenvironment. Polymer Journal, 2020, 52, 861-870.	1.3	55
23	Nanofocused Scanning X-ray Fluorescence Microscopy Revealing an Effect of Heterozygous Hemoglobin S and C on Biochemical Activities in <i>Plasmodium falciparum</i> Infected Erythrocytes. Analytical Chemistry, 2020, 92, 5765-5771.	3.2	1
24	Interplays of Interfacial Forces Modulate Structure and Function of Soft and Biological Matters in Aquatic Environments. Frontiers in Chemistry, 2020, 8, 165.	1.8	1
25	Hemoglobin S and C affect biomechanical membrane properties of P. falciparum-infected erythrocytes. Communications Biology, 2019, 2, 311.	2.0	8
26	A physical biomarker of the quality of cultured corneal endothelial cells and of the long-term prognosis of corneal restoration in patients. Nature Biomedical Engineering, 2019, 3, 953-960.	11.6	13
27	Preface to the Interfaces and Biology 1: Mechanobiology Special Issue. Langmuir, 2019, 35, 7333-7334.	1.6	0
28	In Vitro Dynamic Phenotyping for Testing Novel Mobilizing Agents. Methods in Molecular Biology, 2019, 2017, 11-27.	0.4	1
29	Influence of Perfluorohexaneâ€Enriched Atmosphere on Viscoelasticity and Structural Order of Selfâ€Assembled Semifluorinated Alkanes at the Airâ€Water Interface. ChemPhysChem, 2019, 20, 1698-1705.	1.0	4
30	Hybrid coating of alginate microbeads based on proteinâ€biopolymer multilayers for encapsulation of probiotics. Biotechnology Progress, 2019, 35, e2806.	1.3	16
31	New Class of Crosslinker-Free Nanofiber Biomaterials from Hydra Nematocyst Proteins. Scientific Reports, 2019, 9, 19116.	1.6	8
32	3D Cellular Architecture Modulates Tyrosine Kinase Activity, Thereby Switching CD95-Mediated Apoptosis to Survival. Cell Reports, 2019, 29, 2295-2306.e6.	2.9	21
33	Shear-Enhanced Dynamic Adhesion of Lactobacillus rhamnosus GG on Intestinal Epithelia: Correlative Effect of Protein Expression and Interface Mechanics. Langmuir, 2019, 35, 529-537.	1.6	9
34	Longâ∈Range Lateral Correlation between Selfâ∈Assembled Domains of Fluorocarbonâ∈Hydrocarbon Tetrablocks by Quantitative GISAXS. ChemPhysChem, 2019, 20, 898-904.	1.0	3
35	Controlling the shape of 3D microstructures by temperature and light. Nature Communications, 2019, 10, 232.	5.8	193
36	Dynamic Contact Guidance of Myoblasts by Feature Size and Reversible Switching of Substrate Topography: Orchestration of Cell Shape, Orientation, and Nematic Ordering of Actin Cytoskeletons. Langmuir, 2019, 35, 7538-7551.	1.6	24

#	Article	IF	Citations
37	Local traction force in the proximal leading process triggers nuclear translocation during neuronal migration. Neuroscience Research, 2019, 142, 38-48.	1.0	15
38	Dynamic cellular phenotyping defines specific mobilization mechanisms of human hematopoietic stem and progenitor cells induced by SDF1î± versus synthetic agents. Scientific Reports, 2018, 8, 1841.	1.6	7
39	Emergence of Strong Nonlinear Viscoelastic Response of Semifluorinated Alkane Monolayers. Langmuir, 2018, 34, 2489-2496.	1.6	6
40	Flexible Modulation of Electronic Band Structures of Wide Band Gap GaN Semiconductors Using Bioinspired, Nonbiological Helical Peptides. Advanced Functional Materials, 2018, 28, 1704034.	7.8	9
41	Ib-AMP4 insertion causes surface rearrangement in the phospholipid bilayer of biomembranes: Implications from quartz-crystal microbalance with dissipation. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 617-623.	1.4	13
42	2D Spherulites of a Semiâ€Fluorinated Alkane: Controlled Access to Either Radial Or Ringâ€Banded Morphologies. ChemPhysChem, 2018, 19, 29-33.	1.0	6
43	Frontispiece: Newly Synthesized Lipid–Porphyrin Conjugates: Evaluation of Their Selfâ€Assembling Properties, Their Miscibility with Phospholipids and Their Photodynamic Activity In Vitro. Chemistry - A European Journal, 2018, 24, .	1.7	1
44	The sickle cell trait affects contact dynamics and endothelial cell activation in Plasmodium falciparum-infected erythrocytes. Communications Biology, 2018, 1, 211.	2.0	23
45	HIV-1 Nef Disrupts CD4+ T Lymphocyte Polarity, Extravasation, and Homing to Lymph Nodes via Its Nef-Associated Kinase Complex Interface. Journal of Immunology, 2018, 201, 2731-2743.	0.4	11
46	Optical Fluid Pump: Generation of Directional Flow via Microphase Segregation/Homogenization. Journal of Physical Chemistry Letters, 2018, 9, 5792-5796.	2.1	1
47	Nonlinear Viscoelasticity of Highly Ordered, Two-Dimensional Assemblies of Metal Nanoparticles Confined at the Air/Water Interface. Langmuir, 2018, 34, 13025-13034.	1.6	4
48	Newly Synthesized Lipid–Porphyrin Conjugates: Evaluation of Their Selfâ€Assembling Properties, Their Miscibility with Phospholipids and Their Photodynamic Activity In Vitro. Chemistry - A European Journal, 2018, 24, 19179-19194.	1.7	26
49	Nonclassical Interactions of Phosphatidylcholine with Mucin Protect Intestinal Surfaces: A Microinterferometry Study. Langmuir, 2018, 34, 14046-14057.	1.6	9
50	Low Cell-Matrix Adhesion Reveals Two Subtypes of Human Pluripotent Stem Cells. Stem Cell Reports, 2018, 11, 142-156.	2.3	37
51	Simple Physical Model Unravels Influences of Chemokine on Shape Deformation and Migration of Human Hematopoietic Stem Cells. Scientific Reports, 2018, 8, 10630.	1.6	5
52	Neutron Scattering Reveals Water Confined in a Watertight Bilayer Vesicle. Journal of the American Chemical Society, 2018, 140, 11261-11266.	6.6	13
53	Lipid-coated mesoporous silica microparticles for the controlled delivery of \hat{l}^2 -galactosidase into intestines. Journal of Materials Chemistry B, 2018, 6, 5633-5639.	2.9	17
54	Biopolymer-Based Minimal Formulations Boost Viability and Metabolic Functionality of Probiotics <i>Lactobacillus rhamnosus </i>	1.6	23

#	Article	IF	Citations
55	Cell surface flip-flop of phosphatidylserine is critical for PIEZO1-mediated myotube formation. Nature Communications, 2018, 9, 2049.	5.8	127
56	Accumulation of phosphatidylcholine on gut mucosal surface is not dominated by electrostatic interactions. Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 959-965.	1.4	18
57	Mechanical diagnosis of human erythrocytes by ultra-high speed manipulation unraveled critical time window for global cytoskeletal remodeling. Scientific Reports, 2017, 7, 43134.	1.6	32
58	Red blood cell deformability upon continuous or repetitive loadings., 2017,,.		2
59	Observation of cell pinball through high speed switching between reflection interference and phase contrast., 2017,,.		2
60	Three-Legged 2,2′-Bipyridine Monomer at the Air/Water Interface: Monolayer Structure and Reactions with Ni(II) lons from the Subphase. Langmuir, 2017, 33, 1646-1654.	1.6	5
61	Mechanical Response of Single Triacylglycerol Spherulites by Using Microcolloidal Probes. Chemistry Letters, 2017, 46, 599-601.	0.7	5
62	Ion-Specific Modulation of Interfacial Interaction Potentials between Solid Substrates and Cell-Sized Particles Mediated via Zwitterionic, Super-Hydrophilic Poly(sulfobetaine) Brushes. Journal of Physical Chemistry B, 2017, 121, 1396-1404.	1.2	17
63	Lensless Tomographic Imaging of Near Surface Structures of Frozen Hydrated Malaria-Infected Human Erythrocytes by Coherent X-Ray Diffraction Microscopy. Scientific Reports, 2017, 7, 14081.	1.6	6
64	Dynamic Mechano-Regulation of Myoblast Cells on Supramolecular Hydrogels Cross-Linked by Reversible Host-Guest Interactions. Scientific Reports, 2017, 7, 7660.	1.6	46
65	Adsorption of galloyl catechin aggregates significantly modulates membrane mechanics in the absence of biochemical cues. Physical Chemistry Chemical Physics, 2017, 19, 19937-19947.	1.3	18
66	Size, Shape, and Lateral Correlation of Highly Uniform, Mesoscopic, Selfâ€Assembled Domains of Fluorocarbonâ€"Hydrocarbon Diblocks at the Air/Water Interface: A GISAXS Study. ChemPhysChem, 2017, 18, 2791-2798.	1.0	17
67	Existence of Twoâ€Dimensional Physical Gels even at Zero Surface Pressure at the Air/Water Interface: Rheology of Selfâ€Assembled Domains of Small Molecules. Angewandte Chemie, 2017, 129, 12777-12781.	1.6	3
68	Existence of Twoâ€Dimensional Physical Gels even at Zero Surface Pressure at the Air/Water Interface: Rheology of Selfâ€Assembled Domains of Small Molecules. Angewandte Chemie - International Edition, 2017, 56, 12603-12607.	7.2	14
69	Cooling induces phase separation in membranes derived from isolated CNS myelin. PLoS ONE, 2017, 12, e0184881.	1.1	4
70	High-resolution cell manipulation for longstanding load on red blood cells. , 2016, , .		1
71	Epidermal-specific deletion of CD44 reveals a function in keratinocytes in response to mechanical stress. Cell Death and Disease, 2016, 7, e2461-e2461.	2.7	35
72	N-glycosylation enables high lateral mobility of GPI-anchored proteins at a molecular crowding threshold. Nature Communications, 2016, 7, 12870.	5.8	29

#	Article	IF	CITATIONS
73	Frequent mechanical stress suppresses proliferation of mesenchymal stem cells from human bone marrow without loss of multipotency. Scientific Reports, 2016, 6, 24264.	1.6	39
74	Tracking mechanical and morphological dynamics of regenerating Hydra tissue fragments using a two fingered micro-robotic hand. Applied Physics Letters, $2016,108,.$	1.5	9
75	Catch, load and launch toward on-chip active cell evaluation. , 2016, , .		11
76	Fine Adjustment of Interfacial Potential between pH-Responsive Hydrogels and Cell-Sized Particles. Langmuir, 2015, 31, 8689-8696.	1.6	11
77	Cytoadhesion of Plasmodium falciparum–infected erythrocytes to chondroitin-4-sulfate is cooperative and shear enhanced. Blood, 2015, 125, 383-391.	0.6	36
78	Quantification of the Influence of Endotoxins on the Mechanics of Adult and Neonatal Red Blood Cells. Journal of Physical Chemistry B, 2015, 119, 7837-7845.	1.2	10
79	Impact of Lipid Oxidization on Vertical Structures and Electrostatics of Phospholipid Monolayers Revealed by Combination of Specular X-ray Reflectivity and Grazing-Incidence X-ray Fluorescence. Journal of Physical Chemistry B, 2015, 119, 9787-9794.	1.2	12
80	Impact of Lipid Oxidization on Biophysical Properties of Model Cell Membranes. Journal of Physical Chemistry B, 2015, 119, 5857-5863.	1.2	29
81	Bacterial lipopolysaccharides form physically cross-linked, two-dimensional gels in the presence of divalent cations. Soft Matter, 2015, 11, 6037-6044.	1.2	49
82	Generic Role of Polymer Supports in the Fine Adjustment of Interfacial Interactions between Solid Substrates and Model Cell Membranes. Langmuir, 2015, 31, 4473-4480.	1.6	10
83	Influence of length and conformation of saccharide head groups on the mechanics of glycolipid membranes: Unraveled by off-specular neutron scattering. Journal of Chemical Physics, 2015, 142, 154907.	1.2	6
84	Combination of MD Simulations with Two-State Kinetic Rate Modeling Elucidates the Chain Melting Transition of Phospholipid Bilayers for Different Hydration Levels. Journal of Physical Chemistry B, 2015, 119, 14157-14167.	1.2	23
85	Live cell tracking of symmetry break in actin cytoskeleton triggered by abrupt changes in micromechanical environments. Biomaterials Science, 2015, 3, 1539-1544.	2.6	13
86	Quantifying Adhesion Mechanisms and Dynamics of Human Hematopoietic Stem and Progenitor Cells. Scientific Reports, 2015, 5, 9370.	1.6	29
87	High Precision, Electrochemical Detection of Reversible Binding of Recombinant Proteins on Wide Bandgap GaN Electrodes Functionalized with Biomembrane Models. Advanced Functional Materials, 2014, 24, 4927-4934.	7.8	4
88	Mechanistic Investigation of Interactions between Steroidal Saponin Digitonin and Cell Membrane Models. Journal of Physical Chemistry B, 2014, 118, 14632-14639.	1,2	48
89	Counteracting the inhibitory effect of proteins towards lung surfactant substitutes: a fluorocarbon gas helps displace albumin at the air/water interface. Chemical Communications, 2014, 50, 11576-11579.	2.2	18
90	High Contrast Visualization of Cell–Hydrogel Contact by Advanced Interferometric Optical Microscopy. Journal of Physical Chemistry Letters, 2014, 5, 253-257.	2.1	14

#	Article	IF	Citations
91	Unraveling Mesoscopic, Hierarchical Structures of Bio/Soft Interfaces Using Grazing Incidence Scattering and Fluorescence. Seibutsu Butsuri, 2014, 54, 114-117.	0.0	0
92	Physics of interactions at biological and biomaterial interfaces. Current Opinion in Colloid and Interface Science, 2013, 18, 432-439.	3.4	13
93	Grazing-Incidence Neutron-Induced Fluorescence Probes Density Profiles of Labeled Molecules at Solid/Liquid Interfaces. Langmuir, 2013, 29, 4084-4091.	1.6	4
94	Quantitative Determination of Lateral Concentration and Depth Profile of Histidine-Tagged Recombinant Proteins Probed by Grazing Incidence X-ray Fluorescence. Journal of Physical Chemistry B, 2013, 117, 5002-5008.	1.2	14
95	Morphology and Adhesion Strength of Myoblast Cells on Photocurable Gelatin under Native and Non-native Micromechanical Environments. Journal of Physical Chemistry B, 2013, 117, 4081-4088.	1.2	31
96	Supported Membranes Meet Flat Fluidics: Monitoring Dynamic Cell Adhesion on Pump-Free Microfluidics Chips Functionalized with Supported Membranes Displaying Mannose Domains. Materials, 2013, 6, 669-681.	1.3	2
97	Physical interactions of fish protamine and antisepsis peptide drugs with bacterial membranes revealed by combination of specular x-ray reflectivity and grazing-incidence x-ray fluorescence. Physical Review E, 2013, 88, 012705.	0.8	33
98	Cell Differentiation of Pluripotent Tissue Sheets Immobilized on Supported Membranes Displaying Cadherin-11. PLoS ONE, 2013, 8, e54749.	1.1	20
99	Quantitative determination of the lateral density and intermolecular correlation between proteins anchored on the membrane surfaces using grazing incidence small-angle X-ray scattering and grazing incidence X-ray fluorescence. Journal of Chemical Physics, 2012, 137, 204907.	1.2	21
100	Quantitative Evaluation of Adhesion of Osteosarcoma Cells to Hydrophobic Polymer Substrate with Tunable Elasticity. Journal of Physical Chemistry B, 2012, 116, 8024-8030.	1.2	18
101	Functional expression of Ca2+ dependent mammalian transmembrane gap junction protein Cx43 in slime mold Dictyostelium discoideum. Biochemical and Biophysical Research Communications, 2012, 419, 165-169.	1.0	2
102	5.13 Supported Membranes – Structure and Interactions. , 2012, , 261-272.		0
103	Functional Coating of Porous Silica Microparticles with Native Biomembranes towards Portable Flowâ€Through Biochemical Microreactors. Advanced Functional Materials, 2012, 22, 4873-4878.	7.8	9
104	Spatio-Temporal Patterns of Pancreatic Cancer Cells Expressing CD44 Isoforms on Supported Membranes Displaying Hyaluronic Acid Oligomers Arrays. PLoS ONE, 2012, 7, e42991.	1.1	34
105	Dissipative Structure Formation in Lipid/Lipopolymer Monolayers. Journal of Physical Chemistry B, 2011, 115, 2256-2263.	1.2	9
106	Quantitative Evaluation of Mechanosensing of Cells on Dynamically Tunable Hydrogels. Journal of the American Chemical Society, 2011, 133, 1367-1374.	6.6	164
107	Membrane Adhesion via Homophilic Saccharide-Saccharide Interactions Investigated by Neutron Scattering. Biophysical Journal, 2011, 100, 2151-2159.	0.2	37
108	Physical Chemistry of Biological Interfaces: Generic and Specific Roles of Soft Interlayers. Chemistry - an Asian Journal, 2011, 6, 1728-1738.	1.7	2

7

#	Article	IF	CITATIONS
109	First order melting transitions of highly ordered dipalmitoyl phosphatidylcholine gel phase membranes in molecular dynamics simulations with atomistic detail. Journal of Chemical Physics, 2011, 135, 055105.	1.2	41
110	Quantitative determination of ion distributions in bacterial lipopolysaccharide membranes by grazing-incidence X-ray fluorescence. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 9147-9151.	3.3	112
111	Crucial roles of charged saccharide moieties in survival of gram negative bacteria against protamine revealed by combination of grazing incidence x-ray structural characterizations and Monte Carlo simulations. Physical Review E, 2010, 81, 041901.	0.8	39
112	Regulation of adhesion behavior of murine macrophage using supported lipid membranes displaying tunable mannose domains. Journal of Physics Condensed Matter, 2010, 22, 285102.	0.7	10
113	Equivalent Aqueous Phase Modulation of Domain Segregation in Myelin Monolayers and Bilayer Vesicles. Biophysical Journal, 2010, 99, 1500-1509.	0.2	12
114	Modulation of Band Bending of Gallium Arsenide with Oriented Helical Peptide Monolayers. Journal of Physical Chemistry C, 2010, 114, 22677-22683.	1.5	9
115	Mechanical properties of interacting lipopolysaccharide membranes from bacteria mutants studied by specular and off-specular neutron scattering. Physical Review E, 2009, 80, 041929.	0.8	32
116	Calcium ions induce collapse of charged O-side chains of lipopolysaccharides from <i>Pseudomonas aeruginosa</i> . Journal of the Royal Society Interface, 2009, 6, S671-8.	1.5	59
117	Modulation of Substrate–Membrane Interactions by Linear Poly(2â€methylâ€2â€oxazoline) Spacers Revealed by Xâ€ray Reflectivity and Ellipsometry. ChemPhysChem, 2009, 10, 2876-2883.	1.0	19
118	Physical mechanisms of bacterial survival revealed by combined grazing-incidence X-ray scattering and Monte Carlo simulation. Comptes Rendus Chimie, 2009, 12, 209-217.	0.2	42
119	Gallium nitride electrodes for membrane-based electrochemical biosensors. European Physical Journal E, 2009, 30, 233-8.	0.7	14
120	Covalent modification of chitin with silk-derivatives acts as an amphiphilic self-organizing template in nacre biomineralisation. Journal of Structural Biology, 2009, 167, 68-75.	1.3	27
121	Native supported membranes on planar polymer supports and micro-particle supports. Journal of Structural Biology, 2009, 168, 137-142.	1.3	20
122	Orientationâ€Selective Incorporation of Transmembrane F ₀ F ₁ ATP Synthase Complex from <i>Micrococcus luteus</i> in Polymerâ€Supported Membranes. Macromolecular Bioscience, 2008, 8, 1034-1043.	2.1	16
123	Diffusion of glycosylphosphatidylinositol (GPI)-anchored bovine prion protein (PrPc) in supported lipid membranes studied by single-molecule and complementary ensemble methods. Journal of Membrane Science, 2008, 321, 61-68.	4.1	7
124	Native supported membranes: Creation of two-dimensional cell membranes on polymer supports (Review). Biointerphases, 2008, 3, FA12-FA16.	0.6	20
125	Structures of regenerated cellulose films revealed by grazing incidence small-angle x-ray scattering. Biointerphases, 2008, 3, 117-127.	0.6	28
126	Electrochemical Sensing of Membrane Potential and Enzyme Function Using Gallium Arsenide Electrodes Functionalized with Supported Membranes. Journal of Physical Chemistry B, 2008, 112, 5736-5741.	1.2	18

#	Article	IF	CITATIONS
127	Structure of Synthetic Transmembrane Lipid Membranes at the Solid/Liquid Interface Studied by Specular X-ray Reflectivity. Journal of Physical Chemistry B, 2008, 112, 10041-10044.	1.2	12
128	Highly uniform, strongly correlated fluorinated lipid nanodomains embedded in biological membrane models. Applied Physics Letters, 2008, 93, .	1.5	13
129	Modulation of intermembrane interaction and bending rigidity of biomembrane models via carbohydrates investigated by specular and off-specular neutron scattering. Physical Review E, 2008, 78, 061924.	0.8	26
130	Polymer-tethered membranes as quantitative models for the study of integrin-mediated cell adhesion. Soft Matter, 2007, 3, 333-336.	1.2	51
131	Frictional Drag and Electrical Manipulation of Recombinant Proteins in Polymer-Supported Membranes. Langmuir, 2007, 23, 5638-5644.	1.6	36
132	Quantitative in Vitro Biopolymerization to Chitin in Native Chitosomal Membranes Supported by Silica Microparticles. Journal of the American Chemical Society, 2007, 129, 10807-10813.	6.6	10
133	pH Sensitivity of Gallium Arsenide (GaAs) Electrodes Functionalized with Methylâ^mercaptobiphenyl Monolayers. Journal of Physical Chemistry C, 2007, 111, 12414-12419.	1.5	11
134	Control of Frictional Coupling of Transmembrane Cell Receptors in Model Cell Membranes with Linear Polymer Spacers. Physical Review Letters, 2007, 98, 078102.	2.9	37
135	Physical study of the arrangement of pure catanionic glycolipids and interaction with phospholipids, in support of the optimisation of anti-HIV therapies. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 303, 55-72.	2.3	12
136	Reversible Activation of Diblock Copolymer Monolayers at the Interface by pH Modulation, 1:Â Lateral Chain Density and Conformation. Journal of Physical Chemistry B, 2006, 110, 9171-9176.	1.2	40
137	Binding of Small Mono- and Oligomeric Integrin Ligands to Membrane-Embedded Integrins Monitored by Surface Plasmon-Enhanced Fluorescence Spectroscopy. Analytical Chemistry, 2006, 78, 4524-4533.	3.2	21
138	Reversible Activation of Diblock Copolymer Monolayers at the Interface by pH Modulation, 2:Â Membrane Interactions at the Solid/Liquid Interface. Journal of Physical Chemistry B, 2006, 110, 9177-9182.	1.2	30
139	Polymer-Supported Membranes: Physical Models of Cell Surfaces. MRS Bulletin, 2006, 31, 513-520.	1.7	35
140	Supported membranes as biofunctional interfaces and smart biosensor platforms. Physica Status Solidi (A) Applications and Materials Science, 2006, 203, 3452-3462.	0.8	42
141	Polymer-supported membranes as models of the cell surface. Nature, 2005, 437, 656-663.	13.7	873
142	Oligomer-to-Polymer Transition in Short Ethylene Glycol Chains Connected to Mobile Hydrophobic Anchors. ChemPhysChem, 2005, 6, 101-109.	1.0	1
143	Electrochemical stabilization of crystalline silicon with aromatic self-assembled monolayers in aqueous electrolytes. Physica Status Solidi (B): Basic Research, 2005, 242, 2838-2845.	0.7	5
144	Stripes of partially fluorinated alkyl chains: Dipolar Langmuir monolayers. Journal of Chemical Physics, 2005, 122, 094717.	1.2	30

#	Article	IF	Citations
145	Chemical functionalization of GaN and AlN surfaces. Applied Physics Letters, 2005, 87, 263901.	1.5	128
146	Confinement of Transmembrane Cell Receptors in Tunable Stripe Micropatterns. Journal of the American Chemical Society, 2005, 127, 1258-1264.	6.6	89
147	Many length scales surface fractality in monomolecular films of whole myelin lipids and proteins. Journal of Structural Biology, 2005, 149, 158-169.	1.3	23
148	Wetting and dewetting of extracellular matrix and glycocalix models. Journal of Physics Condensed Matter, 2005, 17, S649-S663.	0.7	26
149	Cell Surface Models on Polymer Supports – From Artificial Membranes to Native Cells. Behavior Research Methods, 2005, 2, 95-120.	2.3	1
150	Liquid phase sensors based on chemically functionalized GaAs/AlGaAs heterostructures. Physica E: Low-Dimensional Systems and Nanostructures, 2004, 21, 1111-1115.	1.3	33
151	Supported Membranes with Well-Defined Polymer Tethersâ€"Incorporation of Cell Receptors. ChemPhysChem, 2004, 5, 327-335.	1.0	115
152	Functional Microdomains of Glycolipids with Partially Fluorinated Membrane Anchors: Impact on Cell Adhesion. ChemPhysChem, 2004, 5, 216-224.	1.0	23
153	Influence of Subphase Conditions on Interfacial Viscoelastic Properties of Synthetic Lipids with Gentiobiose Head Groups. Journal of Physical Chemistry B, 2004, 108, 3211-3214.	1.2	13
154	Balance of pH and Ionic Strength Influences on Chain Melting Transition in Catanionic Vesicles. Journal of Physical Chemistry B, 2004, 108, 7986-7991.	1.2	55
155	Spectroscopic Characterization of 4â€~-Substituted Aromatic Self-Assembled Monolayers on GaAs(100) Surface. Journal of Physical Chemistry B, 2004, 108, 17964-17972.	1.2	37
156	Selective Deposition of Native Cell Membranes on Biocompatible Micropatterns. Journal of the American Chemical Society, 2004, 126, 3257-3260.	6.6	68
157	Swelling Behavior of Polyelectrolyte Multilayers in Saturated Water Vapor. Macromolecules, 2004, 37, 7285-7289.	2.2	180
158	Solid-supported biomimetic membranes with tailored lipopolymer tethers. Macromolecular Symposia, 2004, 210, 329-338.	0.4	37
159	Comment on supported lipid membrane on semiconductor electrode. Materials Chemistry and Physics, 2003, 78, 22-24.	2.0	1
160	Cell Adhesion onto Highly Curved Surfaces: One-Step Immobilization of Human Erythrocyte Membranes on Silica Beads. ChemPhysChem, 2003, 4, 699-704.	1.0	29
161	In-Plane Structures of Synthetic Oligolactose Lipid Monolayers-Impact of Saccharide Chain Length. ChemPhysChem, 2003, 4, 1316-1322.	1.0	24
162	AlxGa1–xN—A New Material System for Biosensors. Advanced Functional Materials, 2003, 13, 841-846.	7.8	146

#	Article	IF	Citations
163	Hydration Forces in Ultrathin Films of Celluloseâ€. Langmuir, 2003, 19, 1467-1473.	1.6	56
164	Surface Engineering of Gallium Arsenide with 4-Mercaptobiphenyl Monolayers. Journal of Physical Chemistry B, 2003, 107, 587-591.	1.2	43
165	Functional Incorporation of Integrins into Solid Supported Membranes on Ultrathin Films of Cellulose: Impact on Adhesion. Biophysical Journal, 2003, 85, 646-655.	0.2	153
166	Hydrophilic/Hydrophobic Balance Determines Morphology of Glycolipids with Oligolactose Headgroups. Biophysical Journal, 2003, 84, 306-313.	0.2	24
167	Chemical Engineering of Gallium Arsenide Surfaces with 4â€~-Methyl-4-mercaptobiphenyl and 4â€~-Hydroxy-4-mercaptobiphenyl Monolayers. Journal of Physical Chemistry B, 2003, 107, 11737-11741.	1.2	27
168	Design of functional interface between living systems and semiconductor nano-structures. , 2003, , 191-231.		0
169	A Novel Membrane Charge Sensor:Â Sensitive Detection of Surface Charge at Polymer/Lipid Composite Films on Indium Tin Oxide Electrodes. Journal of Physical Chemistry B, 2002, 106, 477-486.	1.2	42
170	Rheology of glycocalix model at air/water interface. Physical Chemistry Chemical Physics, 2002, 4, 1949-1952.	1.3	26
171	Enhancement of photoluminescence from near-surface quantum dots by suppression of surface state density. Physical Chemistry Chemical Physics, 2002, 4, 785-790.	1.3	35
172	Comment on "Structural characterization of GaAs/thiol/electrolyte interface―[Mater. Lett. 46 (2000) 320–326]. Materials Letters, 2002, 54, 89-91.	1.3	0
173	Static and Dynamic Swelling of Grafted Poly(2-alkyl-2-oxazoline)s. Langmuir, 2002, 18, 4908-4914.	1.6	57
174	Electrochemical Characterization of Self-Assembled Alkylsiloxane Monolayers on Indiumâ^'Tin Oxide (ITO) Semiconductor Electrodes. Journal of Physical Chemistry B, 2001, 105, 4270-4276.	1.2	124
175	Orientation selective immobilization of human erythrocyte membranes on ultrathin cellulose films. Physical Chemistry Chemical Physics, 2001, 3, 4091-4095.	1.3	56
176	Thermodynamic Properties and Swelling Behavior of Glycolipid Monolayers at Interfaces. Journal of Physical Chemistry B, 2001, 105, 5178-5185.	1.2	23
177	Stable Surface Coating of Gallium Arsenide with Octadecylthiol Monolayers. Langmuir, 2001, 17, 4267-4273.	1.6	74
178	Influence of Thiol Coupling on Photoluminescence of Near Surface InAs Quantum Dots. Physica Status Solidi (B): Basic Research, 2001, 224, 871-875.	0.7	36
179	Deposition of highly resistive lipid bilayer on silicon–silicon dioxide electrode and incorporation of gramicidin studied by ac impedance spectroscopy. Electrochimica Acta, 2001, 47, 791-798.	2.6	92
180	Supported membranes on soft polymer cushions: fabrication, characterization and applications. Trends in Biotechnology, 2000, 18, 58-64.	4.9	399

#	Article	lF	CITATIONS
181	Electrochemical passivation of gallium arsenide surface with organic self-assembled monolayers in aqueous electrolytes. Applied Physics Letters, 2000, 76, 3313-3315.	1.5	45
182	High Electric Resistance Polymer/Lipid Composite Films on Indiumâ^'Tinâ^'Oxide Electrodes. Langmuir, 1999, 15, 8451-8459.	1.6	148
183	Static and Kinetic Investigations of the Structural Ordering of Phospholipid Membranes Doped with Azobenzene Derivative. Journal of Physical Chemistry B, 1998, 102, 5358-5362.	1.2	6
184	Photochemical Switching of Ion Transport Through â€~Quasi-Channels' Incorporated into Black Lipid Membrane. Molecular Crystals and Liquid Crystals, 1997, 294, 63-66.	0.3	0
185	Conformational fluctuation and ion permeation of lipid bilayers doped with azobenzene derivative: Infrared spectroscopic study. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1997, 101, 265-271.	0.9	2
186	Photochemical regulation of ion transport through "quasi-channels―embedded in black lipid membrane. Materials Science and Engineering C, 1997, 4, 297-301.	3.8	5
187	Photochemical Regulation of the Electrical Properties of the Novel Planar Bilayer Lipid Membrane Incorporating Spiropyran Derivatives. The Journal of Physical Chemistry, 1996, 100, 5160-5162.	2.9	12
188	Specific photoresponse of DMPC liposomes doped with azobenzene derivative around the phase transition temperature. Thin Solid Films, 1996, 284-285, 829-832.	0.8	2
189	Photochemical control of DC current across planar bilayer lipid membranes doped with azobenzene derivative. Thin Solid Films, 1996, 284-285, 833-835.	0.8	4
190	Permeability enhancement in phospholipid bilayer containing azobenzene derivative around the phase transition temperature. Langmuir, 1995, 11, 2834-2836.	1.6	19
191	Water modulates the lamellar structure and interlayer correlation of poly(perfluorooctyl acrylate) films: a specular and off-specular neutron scattering study. Polymer Journal, 0, , .	1.3	0
192	Time–strain inseparability in multiaxial stress relaxation of supramolecular gels formed <i>via</i> host–guest interactions. Soft Matter, 0, , .	1.2	2
193	Modulation of viscoelasticity and interfacial potential of polyelectrolyte brush by Ion-specific interactions., 0, 2, .		2