Fred W Allendorf

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8935095/publications.pdf

Version: 2024-02-01

47 papers

8,305 citations

34 h-index 214788 47 g-index

48 all docs 48 docs citations

48 times ranked

8308 citing authors

#	Article	IF	CITATIONS
1	The problems with hybrids: setting conservation guidelines. Trends in Ecology and Evolution, 2001, 16, 613-622.	8.7	1,454
2	Identification of management units using population genetic data. Trends in Ecology and Evolution, 2007, 22, 11-16.	8.7	800
3	Harnessing genomics for delineating conservation units. Trends in Ecology and Evolution, 2012, 27, 489-496.	8.7	767
4	Genetic drift and the loss of alleles versus heterozygosity. Zoo Biology, 1986, 5, 181-190.	1.2	682
5	Genetic effects of harvest on wild animal populations. Trends in Ecology and Evolution, 2008, 23, 327-337.	8.7	495
6	Estimation of census and effective population sizes: the increasing usefulness of DNA-based approaches. Conservation Genetics, 2010, 11, 355-373.	1.5	444
7	Loss of Genetic Variation in a Hatchery Stock of Cutthroat Trout. Transactions of the American Fisheries Society, 1980, 109, 537-543.	1.4	318
8	Genetics and the conservation of natural populations: allozymes to genomes. Molecular Ecology, 2017, 26, 420-430.	3.9	260
9	Hybridization rapidly reduces fitness of a native trout in the wild. Biology Letters, 2009, 5, 328-331.	2.3	254
10	Developmental stability and enzyme heterozygosity in rainbow trout. Nature, 1983, 301, 71-72.	27.8	236
11	Genomics advances the study of inbreeding depression in the wild. Evolutionary Applications, 2016, 9, 1205-1218.	3.1	200
12	GENE-CENTROMERE MAPPING IN RAINBOW TROUT: HIGH INTERFERENCE OVER LONG MAP DISTANCES. Genetics, 1983, 103, 771-783.	2.9	189
13	REPRODUCTIVE ISOLATION WITH LITTLE GENETIC DIVERGENCE IN SYMPATRIC POPULATIONS OF BROWN TROUT (<i>SALMO TRUTTA</i>). Genetics, 1979, 92, 247-262.	2.9	163
14	Genomic patterns of introgression in rainbow and westslope cutthroat trout illuminated by overlapping pairedâ€end RAD sequencing. Molecular Ecology, 2013, 22, 3002-3013.	3.9	162
15	Unbroken: RADseq remains a powerful tool for understanding the genetics of adaptation in natural populations. Molecular Ecology Resources, 2017, 17, 362-365.	4.8	156
16	Secondary Tetrasomic Segregation of MDH-B and Preferential Pairing of Homeologues in Rainbow Trout. Genetics, 1997, 145, 1083-1092.	2.9	150
17	Post-2020 goals overlook genetic diversity. Science, 2020, 367, 1083-1085.	12.6	132
18	INHERITANCE OF MERISTIC VARIATION AND THE EVOLUTION OF DEVELOPMENTAL STABILITY IN RAINBOW TROUT. Evolution; International Journal of Organic Evolution, 1985, 39, 308-314.	2.3	123

#	Article	lF	CITATIONS
19	DEVELOPMENTAL INSTABILITY AND HIGH MERISTIC COUNTS IN INTERSPECIFIC HYBRIDS OF SALMONID FISHES. Evolution; International Journal of Organic Evolution, 1985, 39, 1318-1326.	2.3	107
20	Effects of Crossovers Between Homeologs on Inheritance and Population Genomics in Polyploid-Derived Salmonid Fishes. Journal of Heredity, 2015, 106, 217-227.	2.4	97
21	Gene-centromere mapping of 25 loci in rainbow trout. Journal of Heredity, 1986, 77, 307-312.	2.4	96
22	Heterozygosity and developmental stability in gynogenetic diploid and triploid rainbow trout. Heredity, 1985, 54, 219-225.	2.6	91
23	Protein variation, fitness, and captive propagation. Zoo Biology, 1986, 5, 91-99.	1.2	87
24	Developmental Instability as an Indicator of Reduced Genetic Variation in Hatchery Trout. Transactions of the American Fisheries Society, 1985, 114, 230-235.	1.4	77
25	Heterozygosity and components of fitness in a strain of rainbow trout. Biological Journal of the Linnean Society, 1988, 33, 285-304.	1.6	73
26	Protein polymorphism and the rate of loss of duplicate gene expression. Nature, 1978, 272, 76-78.	27.8	71
27	Demographic effects of temperatureâ€dependent sex determination: will tuatara survive global warming?. Global Change Biology, 2010, 16, 60-72.	9.5	69
28	Genetic Divergence and Identification of Seven Cutthroat Trout Subspecies and Rainbow Trout. Transactions of the American Fisheries Society, 1987, 116, 580-587.	1.4	66
29	HETEROZYGOSITY AND DEVELOPMENTAL RATE IN A STRAIN OF RAINBOW TROUT (<i>SALMO GAIRDNERI</i>) Tj	EJQq1 1	0.784314 n
30	INTROGRESSION BETWEEN TWO CUTTHROAT TROUT SUBSPECIES WITH SUBSTANTIAL KARYOTYPIC, NUCLEAR AND MITOCHONDRIAL GENOMIC DIVERGENCE. Genetics, 1985, 111, 905-915.	2.9	51
31	Samples from subdivided populations yield biased estimates of effective size that overestimate the rate of loss of genetic variation. Molecular Ecology Resources, 2014, 14, 87-99.	4.8	46
32	So long to genetic diversity, and thanks for all the fish. Molecular Ecology, 2014, 23, 23-25.	3.9	45
33	IDENTIFICATION OF A GENE REGULATING THE TISSUE EXPRESSION OF A PHOSPHOGLUCOMUTASE LOCUS IN RAINBOW TROUT. Genetics, 1982, 102, 259-268.	2.9	41
34	Vive la résistance: genome-wide selection against introduced alleles in invasive hybrid zones. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20161380.	2.6	40
35	DIFFERENCES IN INBREEDING COEFFICIENTS DO NOT EXPLAIN THE ASSOCIATION BETWEEN HETEROZYGOSITY AT ALLOZYME LOCI AND DEVELOPMENTAL STABILITY IN RAINBOW TROUT. Evolution; International Journal of Organic Evolution, 1987, 41, 1413-1415.	2.3	31
36	Cryptic inbreeding depression in a growing population of a longâ€lived species. Molecular Ecology, 2017, 26, 799-813.	3.9	30

#	Article	IF	CITATIONS
37	Does enzyme heterozygosity influence developmental rate in rainbow trout?. Heredity, 1986, 56, 417-425.	2.6	29
38	Valid estimates of individual inbreeding coefficients from marker-based pedigrees are not feasible in wild populations with low allelic diversity. Conservation Genetics, 2015, 16, 901-913.	1.5	25
39	Recent local adaptation of sockeye salmon to glacial spawning habitats. Evolutionary Ecology, 2010, 24, 391-411.	1.2	23
40	Linkage Mapping Reveals Strong Chiasma Interference in Sockeye Salmon: Implications for Interpreting Genomic Data. G3: Genes, Genomes, Genetics, 2015, 5, 2463-2473.	1.8	19
41	Authors' Reply to Letter to the Editor: Continued improvement to genetic diversity indicator for CBD. Conservation Genetics, 2021, 22, 533-536.	1.5	18
42	Allelic differences in initial expression of paternal alleles at an isocitrate dehydrogenase locus in rainbow trout (Salmo gairdneri). Genesis, 1984, 5, 117-127.	2.1	12
43	Wholeâ€genome resequencing confirms reproductive isolation between sympatric demes of brown trout (<i>Salmo trutta</i>) detected with allozymes. Molecular Ecology, 2022, 31, 498-511.	3.9	10
44	Genetic engineering in conservation. Nature, 2013, 502, 303-303.	27.8	6
45	Adaptive significance of developmental rate in rainbow trout: an experimental test. Biological Journal of the Linnean Society, 1988, 33, 205-216.	1.6	4
46	Zen and deep evolution: The optical delusion of separation. Evolutionary Applications, 2018, 11, 1212-1218.	3.1	2
47	Response to May and Delany: We Never Said Wright was Wrong. Journal of Heredity, 2015, 106, esv072.	2.4	O