Francesca Managò

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8935083/publications.pdf

Version: 2024-02-01

	471061	525886
1,273	17	27
citations	h-index	g-index
29	29	2421
docs citations	times ranked	citing authors
	citations 29	1,273 17 citations h-index 29 29

#	Article	IF	CITATIONS
1	Kidins220/ARMS modulates brain morphology and anxiety-like traits in adult mice. Cell Death Discovery, 2022, 8, 58.	2.0	1
2	Dysbindin-1A modulation of astrocytic dopamine and basal ganglia dependent behaviors relevant to schizophrenia. Molecular Psychiatry, 2022, 27, 4201-4217.	4.1	2
3	SINEUP Non-coding RNA Targeting GDNF Rescues Motor Deficits and Neurodegeneration in a Mouse Model of Parkinson's Disease. Molecular Therapy, 2020, 28, 642-652.	3.7	41
4	Somatostatin interneurons in the prefrontal cortex control affective state discrimination in mice. Nature Neuroscience, 2020, 23, 47-60.	7.1	112
5	Dopamine, Cognitive Impairments and Second-Generation Antipsychotics: From Mechanistic Advances to More Personalized Treatments. Pharmaceuticals, 2020, 13, 365.	1.7	27
6	Retinal biomarkers and pharmacological targets for Hermansky-Pudlak syndrome 7. Scientific Reports, 2020, 10, 3972.	1.6	7
7	Favorable effects of omega-3 polyunsaturated fatty acids in attentional control and conversion rate to psychosis in 22q11.2 deletion syndrome. Neuropharmacology, 2020, 168, 107995.	2.0	9
8	Oxytocin Signaling in the Central Amygdala Modulates Emotion Discrimination in Mice. Current Biology, 2019, 29, 1938-1953.e6.	1.8	125
9	Remote memories are enhanced by COMT activity through dysregulation of the endocannabinoid system in the prefrontal cortex. Molecular Psychiatry, 2018, 23, 1040-1050.	4.1	19
10	NEGR1 and FGFR2 cooperatively regulate cortical development and core behaviours related to autism disorders in mice. Brain, 2018, 141, 2772-2794.	3.7	45
11	Variations in Dysbindin-1 are associated with cognitive response to antipsychotic drug treatment. Nature Communications, 2018, 9, 2265.	5 . 8	38
12	Dopamine transporter (DAT) genetic hypofunction in mice produces alterations consistent with ADHD but not schizophrenia or bipolar disorder. Neuropharmacology, 2017, 121, 179-194.	2.0	52
13	Adolescence is the starting point of sex-dichotomous COMT genetic effects. Translational Psychiatry, 2017, 7, e1141-e1141.	2.4	32
14	Schizophrenia: What's Arc Got to Do with It?. Frontiers in Behavioral Neuroscience, 2017, 11, 181.	1.0	14
15	Modeling Cognitive Impairment. Handbook of Behavioral Neuroscience, 2016, , 69-84.	0.7	1
16	Genetic Disruption of Arc/Arg3.1 in Mice Causes Alterations in Dopamine and Neurobehavioral Phenotypes Related to Schizophrenia. Cell Reports, 2016, 16, 2116-2128.	2.9	89
17	COMT Genetic Reduction Produces Sexually Divergent Effects on Cortical Anatomy and Working Memory in Mice and Humans. Cerebral Cortex, 2015, 25, 2529-2541.	1.6	57
18	Chronic and Acute Intranasal Oxytocin Produce Divergent Social Effects in Mice. Neuropsychopharmacology, 2014, 39, 1102-1114.	2.8	176

#	Article	IF	CITATIONS
19	Interaction between the mGlu receptors 5 antagonist, MPEP, and amphetamine on memory and motor functions in mice. Psychopharmacology, 2013, 226, 541-550.	1.5	4
20	Autism-related behavioral abnormalities in synapsin knockout mice. Behavioural Brain Research, 2013, 251, 65-74.	1.2	123
21	Rapid Generation of Functional Dopaminergic Neurons From Human Induced Pluripotent Stem Cells Through a Single-Step Procedure Using Cell Lineage Transcription Factors. Stem Cells Translational Medicine, 2013, 2, 473-479.	1.6	81
22	Automatic Visual Tracking and Social Behaviour Analysis with Multiple Mice. PLoS ONE, 2013, 8, e74557.	1.1	67
23	The role of GRK6 in animal models of Parkinson's Disease and L-DOPA treatment. Scientific Reports, 2012, 2, 301.	1.6	22
24	Role of Catechol-O-Methyltransferase (COMT)-Dependent Processes in Parkinson's Disease and L-DOPA Treatment. CNS and Neurological Disorders - Drug Targets, 2012, 11, 251-263.	0.8	19
25	Metabotropic Glutamate Receptors 5 Blockade Reverses Spatial Memory Deficits in a Mouse Model of Parkinson's Disease. Neuropsychopharmacology, 2009, 34, 729-738.	2.8	55
26	Role of dopamine receptors subtypes, D1-like and D2-like, within the nucleus accumbens subregions, core and shell, on memory consolidation in the one-trial inhibitory avoidance task. Learning and Memory, 2008, 16, 46-52.	0.5	50