
Julien Cohen-Adad

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8934757/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Rapid simultaneous acquisition of macromolecular tissue volume, susceptibility, and relaxometry maps. Magnetic Resonance in Medicine, 2022, 87, 781-790.	1.9	3
2	Advanced Diffusion MR Imaging for Multiple Sclerosis in the Brain and Spinal Cord. Magnetic Resonance in Medical Sciences, 2022, 21, 58-70.	1.1	9
3	Quantitative electrophysiological assessments as predictive markers of lower limb motor recovery after spinal cord injury: a pilot study with an adaptive trial design. Spinal Cord Series and Cases, 2022, 8, 26.	0.3	1
4	Comparison of multicenter <scp>MRI</scp> protocols for visualizing the spinal cord gray matter. Magnetic Resonance in Medicine, 2022, 88, 849-859.	1.9	4
5	Rapid, automated nerve histomorphometry through open-source artificial intelligence. Scientific Reports, 2022, 12, 5975.	1.6	9
6	Brain-spinal cord interaction in long-term motor sequence learning in human: An fMRI study. NeuroImage, 2022, 253, 119111.	2.1	16
7	The Myelinâ€Weighted Connectome in Parkinson's Disease. Movement Disorders, 2022, 37, 724-733.	2.2	10
8	Reproducibility and Evolution of Diffusion Mri Measurements Within the Cervical Spinal Cord in Multiple Sclerosis. , 2022, , .		1
9	Microscopy-BIDS: An Extension to the Brain Imaging Data Structure for Microscopy Data. Frontiers in Neuroscience, 2022, 16, 871228.	1.4	11
10	Diffusion Kurtosis Imaging of Neonatal Spinal Cord in Clinical Routine. Frontiers in Radiology, 2022, 2, .	1.2	1
11	An interactive meta-analysis of MRI biomarkers of myelin. , 2022, 1, 4.		1
12	Vendorâ€neutral sequences and fully transparent workflows improve interâ€vendor reproducibility of quantitative <scp>MRI</scp> . Magnetic Resonance in Medicine, 2022, 88, 1212-1228.	1.9	17
13	Deep semantic segmentation of natural and medical images: a review. Artificial Intelligence Review, 2021, 54, 137-178.	9.7	398
14	Cortico-spinal imaging to study pain. NeuroImage, 2021, 224, 117439.	2.1	24
15	Stacked Hourglass Network with a Multi-level Attention Mechanism: Where to Look for Intervertebral Disc Labeling. Lecture Notes in Computer Science, 2021, , 406-415.	1.0	5
16	Automatic multiclass intramedullary spinal cord tumor segmentation on MRI with deep learning. NeuroImage: Clinical, 2021, 31, 102766.	1.4	23
17	ivadomed: A Medical Imaging Deep Learning Toolbox. Journal of Open Source Software, 2021, 6, 2868.	2.0	7
18	Spinal Cord Morphology in Degenerative Cervical Myelopathy Patients; Assessing Key Morphological Characteristics Using Machine Vision Tools. Journal of Clinical Medicine, 2021, 10, 892.	1.0	11

#	Article	IF	CITATIONS
19	Associations Between Relative Morning Blood Pressure, Cerebral Blood Flow, and Memory in Older Adults Treated and Controlled for Hypertension. Hypertension, 2021, 77, 1703-1713.	1.3	4
20	Quantitative magnetic resonance imaging of spinal cord microstructure in adults with cerebral palsy. Developmental Medicine and Child Neurology, 2021, 63, 896-896.	1.1	0
21	SoftSeg: Advantages of soft versus binary training for image segmentation. Medical Image Analysis, 2021, 71, 102038.	7.0	34
22	Atlas-Based Quantification of DTI Measures in a Typically Developing Pediatric Spinal Cord. American Journal of Neuroradiology, 2021, 42, 1727-1734.	1.2	3
23	A simple and robust method for automating analysis of naÃ ⁻ ve and regenerating peripheral nerves. PLoS ONE, 2021, 16, e0248323.	1.1	7
24	Open-access quantitative MRI data of the spinal cord and reproducibility across participants, sites and manufacturers. Scientific Data, 2021, 8, 219.	2.4	27
25	Tracking White and Gray Matter Degeneration along the Spinal Cord Axis in Degenerative Cervical Myelopathy. Journal of Neurotrauma, 2021, 38, 2978-2987.	1.7	19
26	Generic acquisition protocol for quantitative MRI of the spinal cord. Nature Protocols, 2021, 16, 4611-4632.	5.5	65
27	Diffusion magnetic resonance imaging reveals tractâ€specific microstructural correlates of electrophysiological impairments in nonâ€myelopathic and myelopathic spinal cord compression. European Journal of Neurology, 2021, 28, 3784-3797.	1.7	16
28	Quantitative 7-Tesla Imaging of Cortical Myelin Changes in Early Multiple Sclerosis. Frontiers in Neurology, 2021, 12, 714820.	1.1	4
29	Spatial correspondence of spinal cord white matter tracts using diffusion tensor imaging, fibre tractography, and atlas-based segmentation. Neuroradiology, 2021, 63, 373-380.	1.1	6
30	The R1-weighted connectome: complementing brain networks with a myelin-sensitive measure. Network Neuroscience, 2021, 5, 358-372.	1.4	17
31	Minimum detectable spinal cord atrophy with automatic segmentation: Investigations using an open-access dataset of healthy participants. NeuroImage: Clinical, 2021, 32, 102849.	1.4	4
32	Reduced Axon Calibre in the Associative Striatum of the Sapap3 Knockout Mouse. Brain Sciences, 2021, 11, 1353.	1.1	6
33	Arterial stiffness cut-off value and white matter integrity in the elderly. NeuroImage: Clinical, 2020, 26, 102007.	1.4	11
34	Profiles of cortical inflammation in multiple sclerosis by 11C-PBR28 MR-PET and 7 Tesla imaging. Multiple Sclerosis Journal, 2020, 26, 1497-1509.	1.4	22
35	Injury volume extracted from MRI predicts neurologic outcome in acute spinal cord injury: A prospective TRACK-SCI pilot study. Journal of Clinical Neuroscience, 2020, 82, 231-236.	0.8	6
36	A Cross-Sectional Study on the Impact of Arterial Stiffness on the Corpus Callosum, a Key White Matter Tract Implicated in Alzheimer's Disease. Journal of Alzheimer's Disease, 2020, 77, 591-605.	1.2	11

#	Article	IF	CITATIONS
37	HARDI-ZOOMit protocol improves specificity to microstructural changes in presymptomatic myelopathy. Scientific Reports, 2020, 10, 17529.	1.6	15
38	7 T imaging reveals a gradient in spinal cord lesion distribution in multiple sclerosis. Brain, 2020, 143, 2973-2987.	3.7	22
39	Imaging Mechanisms of Disease Progression in Multiple Sclerosis: Beyond Brain Atrophy. Journal of Neuroimaging, 2020, 30, 251-266.	1.0	24
40	Machine Learning and Multiparametric Brain MRI to Differentiate Hereditary Diffuse Leukodystrophy with Spheroids from Multiple Sclerosis. Journal of Neuroimaging, 2020, 30, 674-682.	1.0	12
41	Multiple sclerosis lesions in motor tracts from brain to cervical cord: spatial distribution and correlation with disability. Brain, 2020, 143, 2089-2105.	3.7	34
42	Multi-parametric quantitative in vivo spinal cord MRI with unified signal readout and image denoising. NeuroImage, 2020, 217, 116884.	2.1	34
43	Resting-state brain and spinal cord networks in humans are functionally integrated. PLoS Biology, 2020, 18, e3000789.	2.6	37
44	Validation of Rapid Magnetic Resonance Myelin Imaging in Multiple Sclerosis. Annals of Neurology, 2020, 87, 710-724.	2.8	42
45	qMRLab: Quantitative MRI analysis, under one umbrella. Journal of Open Source Software, 2020, 5, 2343.	2.0	36
46	An interactive meta-analysis of MRI biomarkers of myelin. ELife, 2020, 9, .	2.8	99
47	Brainstem and spinal cord MRI identifies altered sensorimotor pathways post-stroke. Nature Communications, 2019, 10, 3524.	5.8	61
48	Geometric Evaluation of Distortion Correction Methods in Diffusion MRI of the Spinal Cord. , 2019, , .		6
49	Guidelines for the conduct of clinical trials in spinal cord injury: Neuroimaging biomarkers. Spinal Cord, 2019, 57, 717-728.	0.9	40
50	Traumatic and nontraumatic spinal cord injury: pathological insights from neuroimaging. Nature Reviews Neurology, 2019, 15, 718-731.	4.9	125
51	Construction of a rat spinal cord atlas of axon morphometry. NeuroImage, 2019, 202, 116156.	2.1	7
52	Spatial distribution of multiple sclerosis lesions in the cervical spinal cord. Brain, 2019, 142, 633-646.	3.7	75
53	Presymptomatic spinal cord pathology in <i>c9orf72</i> mutation carriers: A longitudinal neuroimaging study. Annals of Neurology, 2019, 86, 158-167.	2.8	71
54	Gray Matter Alterations in Early and Late Relapsing-Remitting Multiple Sclerosis Evaluated with Synthetic Quantitative Magnetic Resonance Imaging. Scientific Reports, 2019, 9, 8147.	1.6	16

#	Article	IF	CITATIONS
55	Arterial stiffness and brain integrity: A review of MRI findings. Ageing Research Reviews, 2019, 53, 100907.	5.0	42
56	Open-source pipeline for multi-class segmentation of the spinal cord with deep learning. Magnetic Resonance Imaging, 2019, 64, 21-27.	1.0	13
57	Unsupervised domain adaptation for medical imaging segmentation with self-ensembling. NeuroImage, 2019, 194, 1-11.	2.1	131
58	Convolutional Neural Network–Based Automated Segmentation of the Spinal Cord and Contusion Injury: Deep Learning Biomarker Correlates of Motor Impairment in Acute Spinal Cord Injury. American Journal of Neuroradiology, 2019, 40, 737-744.	1.2	44
59	Linearity, Bias, Intrascanner Repeatability, and Interscanner Reproducibility of Quantitative Multidynamic Multiecho Sequence for Rapid Simultaneous Relaxometry at 3 T. Investigative Radiology, 2019, 54, 39-47.	3.5	79
60	Arterial stiffness and white matter integrity in the elderly: A diffusion tensor and magnetization transfer imaging study. NeuroImage, 2019, 186, 577-585.	2.1	19
61	Axons morphometry in the human spinal cord. NeuroImage, 2019, 185, 119-128.	2.1	19
62	The spinal and cerebral profile of adult spinal-muscular atrophy: A multimodal imaging study. NeuroImage: Clinical, 2019, 21, 101618.	1.4	54
63	Automatic segmentation of the spinal cord and intramedullary multiple sclerosis lesions with convolutional neural networks. NeuroImage, 2019, 184, 901-915.	2.1	163
64	U-Net Fixed-Point Quantization for Medical Image Segmentation. Lecture Notes in Computer Science, 2019, , 115-124.	1.0	12
65	AxonDeepSeg: automatic axon and myelin segmentation from microscopy data using convolutional neural networks. Scientific Reports, 2018, 8, 3816.	1.6	96
66	Can microstructural MRI detect subclinical tissue injury in subjects with asymptomatic cervical spinal cord compression? A prospective cohort study. BMJ Open, 2018, 8, e019809.	0.8	69
67	Microstructural imaging in the spinal cord and validation strategies. NeuroImage, 2018, 182, 169-183.	2.1	42
68	Spinal cord gray matter segmentation using deep dilated convolutions. Scientific Reports, 2018, 8, 5966.	1.6	95
69	Effect of cardiac-related translational motion in diffusion MRI of the spinal cord. Magnetic Resonance Imaging, 2018, 50, 119-124.	1.0	7
70	Promise and pitfalls of g-ratio estimation with MRI. NeuroImage, 2018, 182, 80-96.	2.1	101
71	Realâ€time correction of respirationâ€induced distortions in the human spinal cord using a 24â€channel shim array. Magnetic Resonance in Medicine, 2018, 80, 935-946.	1.9	17
72	Neuroinflammation of the spinal cord and nerve roots in chronic radicular pain patients. Pain, 2018, 159, 968-977.	2.0	109

#	Article	IF	CITATIONS
73	Changes in structural network are associated with cortical demyelination in early multiple sclerosis. Human Brain Mapping, 2018, 39, 2133-2146.	1.9	16
74	Automatic spinal cord localization, robust to MRI contrasts using global curve optimization. Medical Image Analysis, 2018, 44, 215-227.	7.0	30
75	A pneumatic phantom for mimicking respirationâ€induced artifacts in spinal MRI. Magnetic Resonance in Medicine, 2018, 79, 600-605.	1.9	7
76	PAM50: Unbiased multimodal template of the brainstem and spinal cord aligned with the ICBM152 space. NeuroImage, 2018, 165, 170-179.	2.1	143
77	Scan–rescan of axcaliber, macromolecular tissue volume, and gâ€ratio in the spinal cord. Magnetic Resonance in Medicine, 2018, 79, 2759-2765.	1.9	17
78	Spinal Cord Gray Matter Atrophy in Amyotrophic Lateral Sclerosis. American Journal of Neuroradiology, 2018, 39, 184-192.	1.2	40
79	Inter-Vendor Reproducibility of Myelin Water Imaging Using a 3D Gradient and Spin Echo Sequence. Frontiers in Neuroscience, 2018, 12, 854.	1.4	28
80	Postmortem diffusion MRI of the entire human spinal cord at microscopic resolution. NeuroImage: Clinical, 2018, 18, 963-971.	1.4	27
81	Sizeâ€adaptable 13â€channel receive array for brain MRI in human neonates at 3ÂT. NMR in Biomedicine, 2018, 31, e3944.	1.6	21
82	Monitoring for myelopathic progression with multiparametric quantitative MRI. PLoS ONE, 2018, 13, e0195733.	1.1	57
83	What Has Been Learned from Magnetic Resonance Imaging Examination of the Injured Human Spinal Cord: A Canadian Perspective. Journal of Neurotrauma, 2018, 35, 1942-1957.	1.7	8
84	Test-retest reliability of myelin imaging in the human spinal cord: Measurement errors versus region- and aging-induced variations. PLoS ONE, 2018, 13, e0189944.	1.1	20
85	Deep Semi-supervised Segmentation with Weight-Averaged Consistency Targets. Lecture Notes in Computer Science, 2018, , 12-19.	1.0	36
86	Topologically preserving straightening of spinal cord MRI. Journal of Magnetic Resonance Imaging, 2017, 46, 1209-1219.	1.9	22
87	MRI Atlas-Based Measurement of Spinal Cord Injury Predicts Outcome in Acute Flaccid Myelitis. American Journal of Neuroradiology, 2017, 38, 410-417.	1.2	25
88	A Novel MRI Biomarker of Spinal Cord White Matter Injury: T2*-Weighted White Matter to Gray Matter Signal Intensity Ratio. American Journal of Neuroradiology, 2017, 38, 1266-1273.	1.2	64
89	Clinically Feasible Microstructural MRI to Quantify Cervical Spinal Cord Tissue Injury Using DTI, MT, and T2*-Weighted Imaging: Assessment of Normative Data and Reliability. American Journal of Neuroradiology, 2017, 38, 1257-1265.	1.2	62
90	Spinal cord grey matter segmentation challenge. NeuroImage, 2017, 152, 312-329.	2.1	97

#	Article	IF	CITATIONS
91	In vivo characterization of cortical and white matter neuroaxonal pathology in early multiple sclerosis. Brain, 2017, 140, 2912-2926.	3.7	159
92	Functional Magnetic Resonance Imaging of the Spinal Cord: Current Status and Future Developments. Seminars in Ultrasound, CT and MRI, 2017, 38, 176-186.	0.7	34
93	g-Ratio weighted imaging of the human spinal cord in vivo. NeuroImage, 2017, 145, 11-23.	2.1	66
94	SCT: Spinal Cord Toolbox, an open-source software for processing spinal cord MRI data. NeuroImage, 2017, 145, 24-43.	2.1	390
95	Fully-integrated framework for the segmentation and registration of the spinal cord white and gray matter. NeuroImage, 2017, 150, 358-372.	2.1	41
96	Axon and Myelin Morphology in Animal and Human Spinal Cord. Frontiers in Neuroanatomy, 2017, 11, 129.	0.9	62
97	AxonPacking: An Open-Source Software to Simulate Arrangements of Axons in White Matter. Frontiers in Neuroinformatics, 2017, 11, 5.	1.3	12
98	OptiC: Robust and Automatic Spinal Cord Localization on a Large Variety of MRI Data Using a Distance Transform Based Global Optimization. Lecture Notes in Computer Science, 2017, , 712-719.	1.0	2
99	Grey Matter Segmentation in Spinal Cord MRIs via 3D Convolutional Encoder Networks with Shortcut Connections. Lecture Notes in Computer Science, 2017, , 330-337.	1.0	7
100	AxonSeg: Open Source Software for Axon and Myelin Segmentation and Morphometric Analysis. Frontiers in Neuroinformatics, 2016, 10, 37.	1.3	46
101	ZOOM or Non-ZOOM? Assessing Spinal Cord Diffusion Tensor Imaging Protocols for Multi-Centre Studies. PLoS ONE, 2016, 11, e0155557.	1.1	58
102	A 24 hannel shim array for the human spinal cord: Design, evaluation, and application. Magnetic Resonance in Medicine, 2016, 76, 1604-1611.	1.9	29
103	Brainhack: a collaborative workshop for the open neuroscience community. GigaScience, 2016, 5, 16.	3.3	34
104	Fully automated segmentation of the cervical cord from T1-weighted MRI using PropSeg : Application to multiple sclerosis. NeuroImage: Clinical, 2016, 10, 71-77.	1.4	56
105	Translating state-of-the-art spinal cord MRI techniques to clinical use: A systematic review of clinical studies utilizing DTI, MT, MWF, MRS, and fMRI. NeuroImage: Clinical, 2016, 10, 192-238.	1.4	173
106	Segmentation of the human spinal cord. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2016, 29, 125-153.	1.1	52
107	Is the Relationship between Cortical and White Matter Pathologic Changes in Multiple Sclerosis Spatially Specific? A Multimodal 7-T and 3-T MR Imaging Study with Surface and Tract-based Analysis. Radiology, 2016, 278, 524-535.	3.6	11
108	Modeling white matter microstructure. Functional Neurology, 2016, 31, 217-228.	1.3	25

#	Article	IF	CITATIONS
109	Quantitative magnetization transfer imaging <i>made</i> easy with <i>q</i> <scp>MTL</scp> <i>ab</i> : Software for data simulation, analysis, and visualization. Concepts in Magnetic Resonance Part A: Bridging Education and Research, 2015, 44A, 263-277.	0.2	39
110	Validation of a semiautomated spinal cord segmentation method. Journal of Magnetic Resonance Imaging, 2015, 41, 454-459.	1.9	17
111	Simultaneous Brain–Cervical Cord fMRI Reveals Intrinsic Spinal Cord Plasticity during Motor Sequence Learning. PLoS Biology, 2015, 13, e1002186.	2.6	83
112	Automatic Segmentation of the Spinal Cord and Spinal Canal Coupled With Vertebral Labeling. IEEE Transactions on Medical Imaging, 2015, 34, 1705-1718.	5.4	64
113	Reproducibility of T ₂ * mapping in the human cerebral cortex in vivo at 7 tesla MRI. Journal of Magnetic Resonance Imaging, 2015, 42, 290-296.	1.9	21
114	A gradient in cortical pathology in multiple sclerosis by in vivo quantitative 7 T imaging. Brain, 2015, 138, 932-945.	3.7	121
115	Quantifying the Microvascular Origin of BOLD-fMRI from First Principles with Two-Photon Microscopy and an Oxygen-Sensitive Nanoprobe. Journal of Neuroscience, 2015, 35, 3663-3675.	1.7	196
116	White matter atlas of the human spinal cord with estimation of partial volume effect. NeuroImage, 2015, 119, 262-271.	2.1	94
117	Characterizing the Location of Spinal and Vertebral Levels in the Human Cervical Spinal Cord. American Journal of Neuroradiology, 2015, 36, 803-810.	1.2	60
118	In vivo mapping of human spinal cord microstructure at 300 mT/m. NeuroImage, 2015, 118, 494-507.	2.1	69
119	Multivariate combination of magnetization transfer, T 2 * and B0 orientation to study the myelo-architecture of the in vivo human cortex. NeuroImage, 2015, 119, 89-102.	2.1	54
120	A reliable spatially normalized template of the human spinal cord — Applications to automated white matter/gray matter segmentation and tensor-based morphometry (TBM) mapping of gray matter alter alterations occurring with age. NeuroImage, 2015, 117, 20-28.	2.1	31
121	The impact of gradient strength on in vivo diffusion MRI estimates of axon diameter. NeuroImage, 2015, 106, 464-472.	2.1	95
122	High-resolution imaging of the central nervous system. Progress in Brain Research, 2015, 218, 55-78.	0.9	5
123	In vivo histology of the myelin g-ratio with magnetic resonance imaging. NeuroImage, 2015, 118, 397-405.	2.1	256
124	Quantitative analysis of the myelin g -ratio from electron microscopy images of the macaque corpus callosum. Data in Brief, 2015, 4, 368-373.	0.5	56
125	Spinal diffusion tensor imaging: A comprehensive review with emphasis on spinal cord anatomy and clinical applications. Clinical Anatomy, 2015, 28, 88-95.	1.5	35
126	Spinal Cord Segmentation by One Dimensional Normalized Template Matching: A Novel, Quantitative Technique to Analyze Advanced Magnetic Resonance Imaging Data. PLoS ONE, 2015, 10, e0139323.	1.1	7

#	Article	IF	CITATIONS
127	Array Coils. , 2014, , 59-67.		7
128	Automatic Labeling of Vertebral Levels Using a Robust Template-Based Approach. International Journal of Biomedical Imaging, 2014, 2014, 1-9.	3.0	39
129	Nineteen-channel receive array and four-channel transmit array coil for cervical spinal cord imaging at 7T. Magnetic Resonance in Medicine, 2014, 72, spcone-spcone.	1.9	Ο
130	Nineteen-channel receive array and four-channel transmit array coil for cervical spinal cord imaging at 7T. Magnetic Resonance in Medicine, 2014, 72, 291-300.	1.9	52
131	Effect of respiration on the B ₀ field in the human spinal cord at 3T. Magnetic Resonance in Medicine, 2014, 72, 1629-1636.	1.9	77
132	The current state-of-the-art of spinal cord imaging: Applications. NeuroImage, 2014, 84, 1082-1093.	2.1	169
133	Framework for integrated MRI average of the spinal cord white and gray matter: The MNI–Poly–AMU template. NeuroImage, 2014, 102, 817-827.	2.1	92
134	Spinal Cord fMRI. , 2014, , 221-239.		12
135	The current state-of-the-art of spinal cord imaging: Methods. NeuroImage, 2014, 84, 1070-1081.	2.1	256
136	Robust, accurate and fast automatic segmentation of the spinal cord. NeuroImage, 2014, 98, 528-536.	2.1	134
137	What can we learn from T2* maps of the cortex?. NeuroImage, 2014, 93, 189-200.	2.1	66
138	Multi-Parametric Spinal Cord MRI as Potential Progression Marker in Amyotrophic Lateral Sclerosis. PLoS ONE, 2014, 9, e95516.	1.1	90
139	Recovery of locomotion after partial spinal cord lesions in cats: assessment using behavioral, electrophysiological and imaging techniques. Acta Neurobiologiae Experimentalis, 2014, 74, 142-57.	0.4	7
140	Involvement of spinal sensory pathway in ALS and specificity of cord atrophy to lower motor neuron degeneration. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2013, 14, 30-38.	1.1	96
141	The Human Connectome Project and beyond: Initial applications of 300mT/m gradients. NeuroImage, 2013, 80, 234-245.	2.1	309
142	Pushing the limits of in vivo diffusion MRI for the Human Connectome Project. Neurolmage, 2013, 80, 220-233.	2.1	460
143	7â€T MRI of the spinal cord can detect lateral corticospinal tract abnormality in amyotrophic lateral sclerosis. Muscle and Nerve, 2013, 47, 760-762.	1.0	31
144	7T MRI of spinal cord injury. Neurology, 2012, 79, 2217-2217.	1.5	18

1

#	Article	IF	CITATIONS
145	Accelerated diffusion spectrum imaging with compressed sensing using adaptive dictionaries. Magnetic Resonance in Medicine, 2012, 68, spcone-spcone.	1.9	4
146	T2* mapping and B0 orientation-dependence at 7T reveal cyto- and myeloarchitecture organization of the human cortex. NeuroImage, 2012, 60, 1006-1014.	2.1	133
147	Improving diffusion MRI using simultaneous multi-slice echo planar imaging. NeuroImage, 2012, 63, 569-580.	2.1	303
148	Reduction of physiological noise with independent component analysis improves the detection of nociceptive responses with fMRI of the human spinal cord. NeuroImage, 2012, 63, 245-252.	2.1	22
149	Cervical spinal cord injection of epidural corticosteroids: Comprehensive longitudinal study including multiparametric magnetic resonance imaging. Pain, 2012, 153, 2292-2299.	2.0	20
150	In vivo evidence of disseminated subpial T2* signal changes in multiple sclerosis at 7 T: A surface-based analysis. NeuroImage, 2011, 57, 55-62.	2.1	55
151	Wallerian degeneration after spinal cord lesions in cats detected with diffusion tensor imaging. NeuroImage, 2011, 57, 1068-1076.	2.1	43
152	Demyelination and degeneration in the injured human spinal cord detected with diffusion and magnetization transfer MRI. NeuroImage, 2011, 55, 1024-1033.	2.1	204
153	Quality assessment of high angular resolution diffusion imaging data using bootstrap on Qâ€ball reconstruction. Journal of Magnetic Resonance Imaging, 2011, 33, 1194-1208.	1.9	29
154	32â€Channel RF coil optimized for brain and cervical spinal cord at 3 T. Magnetic Resonance in Medicine, 2011, 66, 1198-1208.	1.9	45
155	32â€Channel RF coil optimized for brain and cervical spinal cord at 3 T. Magnetic Resonance in Medicine, 2011, 66, spcone.	1.9	0
156	Human cervical spinal cord funiculi: Investigation with magnetic resonance diffusion tensor imaging. Journal of Magnetic Resonance Imaging, 2010, 31, 829-837.	1.9	30
157	BOLD signal responses to controlled hypercapnia in human spinal cord. NeuroImage, 2010, 50, 1074-1084.	2.1	59
158	Characterization of cardiac-related noise in fMRI of the cervical spinal cord. Magnetic Resonance Imaging, 2009, 27, 300-310.	1.0	58
159	Investigations on spinal cord fMRI of cats under ketamine. NeuroImage, 2009, 44, 328-339.	2.1	17
160	In vivo DTI of the healthy and injured cat spinal cord at high spatial and angular resolution. NeuroImage, 2008, 40, 685-697.	2.1	49
161	Detection of multiple pathways in the spinal cord using q-ball imaging. NeuroImage, 2008, 42, 739-749.	2.1	40

Detection of multiple pathways in the spinal cord white matter using q-ball imaging. , 2008, , .

#	Article	IF	CITATIONS
163	Methodology for MR diffusion tensor imaging of the cat spinal cord. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2007, 2007, 323-6.	0.5	8
164	Impact of realignment on spinal functional MRI time series. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2007, 2007, 2126-9.	0.5	6
165	Activation detection in diffuse optical imaging by means of the general linear model. Medical Image Analysis, 2007, 11, 616-629.	7.0	48
166	Promises and limitations of deep learning for medical image segmentation. Journal of Medical Artificial Intelligence, 0, 2, 1-1.	1.1	31
167	Relationship Between Arterial Stiffness Index, Pulse Pressure, and Magnetic Resonance Imaging Markers of White Matter Integrity: A UK Biobank Study. Frontiers in Aging Neuroscience, 0, 14, .	1.7	6