Marcello Marelli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8934654/publications.pdf

Version: 2024-02-01

172207 102304 4,398 77 29 citations h-index g-index papers

79 79 79 7925 docs citations times ranked citing authors all docs

66

#	Article	IF	CITATIONS
1	Tuning the Cu/SiO2 wettability features for bio-derived platform molecules valorization. Molecular Catalysis, 2022, 528, 112462.	1.0	1
2	Development of a Scanning Chemical Vapour Deposition Reactor for the realization of patterned and non-patterned depositions: a preliminary overview. Thin Solid Films, 2021, 717, 138446.	0.8	0
3	Synergy between Nickel Nanoparticles and N-Enriched Carbon Nanotubes Enhances Alkaline Hydrogen Oxidation and Evolution Activity. ACS Applied Nano Materials, 2021, 4, 3586-3596.	2.4	14
4	Quantitative Determination of the Surface Distribution of Supported Metal Nanoparticles: A Laser Ablation–ICP–MS Based Approach. Chemosensors, 2021, 9, 77.	1.8	2
5	Biochar Nanoparticles over TiO2 Nanotube Arrays: A Green Co-Catalyst to Boost the Photocatalytic Degradation of Organic Pollutants. Catalysts, 2021, 11, 1048.	1.6	27
6	Photoinduced Porcine Gelatin Cross-Linking by Homobi- and Homotrifunctional Tetrazoles. Gels, 2021, 7, 124.	2.1	6
7	Molecular cluster route for the facile synthesis of a stable and active Pt nanoparticle catalyst. New Journal of Chemistry, 2021, 45, 11292-11303.	1.4	4
8	A green solvent diverts the hydrogenation of γ–valerolactone to 1,4Â- pentandiol over Cu/SiO2. Molecular Catalysis, 2021, 516, 111936.	1.0	6
9	Better Together: Ilmenite/Hematite Junctions for Photoelectrochemical Water Oxidation. ACS Applied Materials & Samp; Interfaces, 2020, 12, 47435-47446.	4.0	13
10	Microfluidic Synthesis of Hybrid TiO ₂ -Anisotropic Gold Nanoparticles with Visible and Near-Infrared Activity. ACS Applied Materials & Samp; Interfaces, 2020, 12, 38522-38529.	4.0	18
11	Characteristics and Performances of a Nanostructured Material for Passive Samplers of Gaseous Hg. Sensors, 2020, 20, 6021.	2.1	3
12	Electron Small Polaron and Magnetic Interactions Direct Anisotropic Growth of Silicon-Doped Hematite Nanocrystals. Crystal Growth and Design, 2020, 20, 4719-4730.	1.4	4
13	The Role of Support Hydrophobicity in the Selective Hydrogenation of Enones and Unsaturated Sulfones over Cu/SiO2 Catalysts. Catalysts, 2020, 10, 515.	1.6	5
14	Gold nanoparticles onto cerium oxycarbonate as highly efficient catalyst for aerobic allyl alcohol oxidation. Catalysis Communications, 2020, 140, 105989.	1.6	4
15	Supported Tris-Triazole Ligands for Batch and Continuous-Flow Copper-Catalyzed Huisgen 1,3-Dipolar Cycloaddition Reactions. Catalysts, 2020, 10, 434.	1.6	18
16	A supported Pd-Cu/Al2O3 membrane from solvated metal atoms for hydrogen separation/purification. Fuel Processing Technology, 2019, 195, 106141.	3.7	22
17	Palladium–Ceria Catalysts with Enhanced Alkaline Hydrogen Oxidation Activity for Anion Exchange Membrane Fuel Cells. ACS Applied Energy Materials, 2019, 2, 4999-5008.	2.5	56
18	Gelatin-Based Hydrogels through Homobifunctional Triazolinediones Targeting Tyrosine Residues. Molecules, 2019, 24, 589.	1.7	15

#	Article	IF	CITATIONS
19	Some insight on the structure/activity relationship of metal nanoparticles in Cu/SiO2 catalysts. Chinese Journal of Catalysis, 2019, 40, 1788-1794.	6.9	8
20	Hybrid Au/CuO Nanoparticles: Effect of Structural Features for Selective Benzyl Alcohol Oxidation. Journal of Physical Chemistry C, 2019, 123, 2864-2871.	1.5	31
21	Shapedâ€controlled siliconâ€doped hematite nanostructures for enhanced PEC water splitting. Catalysis Today, 2019, 328, 43-49.	2.2	24
22	A detailed investigation of MnO2 nanorods to be grown onto activated carbon. High efficiency towards aqueous methyl orange adsorption/degradation. Applied Surface Science, 2019, 472, 118-126.	3.1	47
23	Reverse type I core - CuI /shell - CuO: A versatile heterostructure for photoelectrochemical applications. Electrochimica Acta, 2018, 266, 441-451.	2.6	15
24	Passive Sampling of Gaseous Elemental Mercury Based on a Composite TiO2NP/AuNP Layer. Nanomaterials, 2018, 8, 798.	1.9	8
25	Photoelectrocatalytic oxidation of As(III) over hematite photoanodes: A sensible indicator of the presence of highly reactive surface sites. Electrochimica Acta, 2018, 292, 828-837.	2.6	13
26	Step-by-Step Growth of HKUST-1 on Functionalized TiO2 Surface: An Efficient Material for CO2 Capture and Solar Photoreduction. Catalysts, 2018, 8, 353.	1.6	52
27	Metal vapor synthesis of ultrasmall Pd nanoparticles functionalized with N-heterocyclic carbenes. Dalton Transactions, 2018, 47, 12647-12651.	1.6	7
28	Highly active nanostructured palladium-ceria electrocatalysts for the hydrogen oxidation reaction in alkaline medium. Nano Energy, 2017, 33, 293-305.	8.2	147
29	Broadband Hotâ€Electron Collection for Solar Water Splitting with Plasmonic Titanium Nitride. Advanced Optical Materials, 2017, 5, 1601031.	3.6	248
30	Effect of Ti- or Si-doping on nanostructure and photo-electro-chemical activity of electro-spun iron oxide fibres. International Journal of Hydrogen Energy, 2017, 42, 28070-28081.	3.8	8
31	Zn- vs Bi-based oxides for o-toluidine photocatalytic treatment under solar light. Environmental Science and Pollution Research, 2017, 24, 8287-8296.	2.7	10
32	Hot Electron Collection on Brookite Nanorods Lateral Facets for Plasmon-Enhanced Water Oxidation. ACS Catalysis, 2017, 7, 1270-1278.	5.5	53
33	Influence of surface coating on the intracellular behaviour of gold nanoparticles: a fluorescence correlation spectroscopy study. Nanoscale, 2017, 9, 14730-14739.	2.8	30
34	Electro-spun Co3O4 anode material for Na-ion rechargeable batteries. Solid State Ionics, 2017, 309, 41-47.	1.3	22
35	Chronic toxicity effects of ZnSO4 and ZnO nanoparticles in Daphnia magna. Environmental Research, 2017, 152, 128-140.	3.7	54
36	A convenient preparation of La2CuO4 from molecular precursors. Polyhedron, 2017, 123, 33-38.	1.0	7

#	Article	IF	Citations
37	Broadband hot electron generation for solar energy conversion with plasmonic titanium nitride., 2017,,.		1
38	Photoelectrochemical Behavior of Electrophoretically Deposited Hematite Thin Films Modified with Ti(IV). Molecules, 2016, 21, 942.	1.7	6
39	The Influence of Carbonaceous Matrices and Electrocatalytic MnO2 Nanopowders on Lithium-Air Battery Performances. Nanomaterials, 2016, 6, 10.	1.9	18
40	Role of soluble zinc in ZnO nanoparticle cytotoxicity in Daphnia magna: A morphological approach. Environmental Research, 2016, 148, 376-385.	3.7	51
41	Controlling the Surface Energetics and Kinetics of Hematite Photoanodes Through Few Atomic Layers of NiO _{<i>x</i>} . ACS Catalysis, 2016, 6, 3619-3628.	5.5	68
42	TiO ₂ Nanotubes Arrays Loaded with Ligand-Free Au Nanoparticles: Enhancement in Photocatalytic Activity. ACS Applied Materials & Samp; Interfaces, 2016, 8, 31051-31058.	4.0	20
43	Are Electrospun Carbon/Metal Oxide Composite Fibers Relevant Electrode Materials for Li-Ion Batteries?. Journal of the Electrochemical Society, 2016, 163, A2930-A2937.	1.3	19
44	A Pd/Câ€CeO ₂ Anode Catalyst for Highâ€Performance Platinumâ€Free Anion Exchange Membrane Fuel Cells. Angewandte Chemie - International Edition, 2016, 55, 6004-6007.	7.2	199
45	Evaluation of the Two-Dimensional Performances of Low Activity Planar Catalysts: Development and Validation of a True Scanning Reactor. ACS Combinatorial Science, 2016, 18, 15-21.	3.8	2
46	High-performance of bare and Ti-doped \hat{l}_{\pm} -MnO2 nanoparticles in catalyzing the Oxygen Reduction Reaction. Journal of Power Sources, 2016, 325, 116-128.	4.0	40
47	Synthesis of Water Dispersible and Catalytically Active Gold-Decorated Cobalt Ferrite Nanoparticles. Langmuir, 2016, 32, 7117-7126.	1.6	19
48	A Pd/Câ€CeO ₂ Anode Catalyst for Highâ€Performance Platinumâ€Free Anion Exchange Membrane Fuel Cells. Angewandte Chemie, 2016, 128, 6108-6111.	1.6	47
49	Ultrafine palladium nanoparticles immobilized into poly(4-vinylpyridine)-based porous monolith for continuous-flow Mizoroki–Heck reaction. Journal of Molecular Catalysis A, 2016, 414, 55-61.	4.8	30
50	Synthesis of Nanocrystalline TiOF ₂ Embedded in a Carbonaceous Matrix from TiF ₄ and <scp>d</scp> -Fructose. Inorganic Chemistry, 2016, 55, 1816-1820.	1.9	8
51	Influence of TiO ₂ electronic structure and strong metal–support interaction on plasmonic Au photocatalytic oxidations. Catalysis Science and Technology, 2016, 6, 3220-3229.	2.1	48
52	Gold-Coated Superparamagnetic Nanoparticles for Single Methyl Discrimination in DNA Aptamers. International Journal of Molecular Sciences, 2015, 16, 27625-27639.	1.8	13
53	Three-Dimensional Reconstruction, by TEM Tomography, of the Ultrastructural Modifications Occurring in Cucumis sativus L. Mitochondria under Fe Deficiency. PLoS ONE, 2015, 10, e0129141.	1.1	26
54	Coprecipitation versus chemical vapour deposition to prepare Rh/Ni bimetallic catalysts. Applied Catalysis B: Environmental, 2015, 179, 150-159.	10.8	16

#	Article	IF	Citations
55	The critical role of intragap states in the energy transfer from gold nanoparticles to TiO ₂ . Physical Chemistry Chemical Physics, 2015, 17, 4864-4869.	1.3	41
56	Probing Longâ€Lived Plasmonicâ€Generated Charges in TiO ₂ /Au by Highâ€Resolution Xâ€ray Absorption Spectroscopy. Angewandte Chemie - International Edition, 2015, 54, 5413-5416.	7.2	67
57	α-Fe ₂ O ₃ /NiOOH: An Effective Heterostructure for Photoelectrochemical Water Oxidation. ACS Catalysis, 2015, 5, 5292-5300.	5.5	219
58	In-situ anatase phase stabilization of titania photocatalyst by sintering in presence of Zr4+ organic salts. Applied Surface Science, 2015, 347, 883-890.	3.1	9
59	Effective Targeting of DC-SIGN by α-Fucosylamide Functionalized Gold Nanoparticles. Bioconjugate Chemistry, 2014, 25, 2244-2251.	1.8	50
60	Hierarchical Hematite Nanoplatelets for Photoelectrochemical Water Splitting. ACS Applied Materials & Samp; Interfaces, 2014, 6, 11997-12004.	4.0	65
61	Control of copper particles deposition in mesoporous SBA-15 silica by modified CVD method. Inorganica Chimica Acta, 2014, 423, 145-151.	1.2	4
62	A Strategy for Multivalent Presentation of Carba Analogues from <i>N. meningitidis</i> A Capsular Polysaccharide. European Journal of Organic Chemistry, 2014, 2014, 5915-5924.	1.2	10
63	Tailored copper nanoparticles in ordered mesoporous KIT-6 silica: Preparation and application as catalysts in integrated system for NO removal with products of methanol decomposition. Applied Catalysis A: General, 2013, 464-465, 243-252.	2.2	20
64	Nanostructured Fe $\hat{a}\in \text{``Ag}$ electrocatalysts for the oxygen reduction reaction in alkaline media. Journal of Materials Chemistry A, 2013, 1, 13337.	5.2	33
65	Unravelling the properties of supported copper oxide: can the particle size induce acidic behaviour?. Dalton Transactions, 2013, 42, 1319-1328.	1.6	58
66	Pt and Au/TiO2 photocatalysts for methanol reforming: Role of metal nanoparticles in tuning charge trapping properties and photoefficiency. Applied Catalysis B: Environmental, 2013, 130-131, 239-248.	10.8	219
67	New generation biofuels: Î ³ -valerolactone into valeric esters in one pot. RSC Advances, 2013, 3, 1302-1306.	1.7	92
68	Size controlled copper nanoparticles hosted in mesoporous silica matrix: Preparation and characterization. Applied Catalysis B: Environmental, 2012, 126, 161-171.	10.8	22
69	Bimetallic Au–Pt/TiO ₂ photocatalysts active under UV-A and simulated sunlight for H ₂ production from ethanol. Green Chemistry, 2012, 14, 330-333.	4.6	104
70	Effect of Nature and Location of Defects on Bandgap Narrowing in Black TiO ₂ Nanoparticles. Journal of the American Chemical Society, 2012, 134, 7600-7603.	6.6	1,464
71	Electrochemical Milling and Faceting: Size Reduction and Catalytic Activation of Palladium Nanoparticles. Angewandte Chemie - International Edition, 2012, 51, 8500-8504.	7.2	63
72	H ₂ Production by Renewables Photoreforming on Pt–Au/TiO ₂ Catalysts Activated by Reduction. ChemSusChem, 2012, 5, 1800-1811.	3.6	102

#	Article	IF	CITATIONS
73	Influence of reaction parameters on the activity of ruthenium based catalysts for glycerol steam reforming. Applied Catalysis B: Environmental, 2012, 121-122, 40-49.	10.8	63
74	Carbonate pseudotachylytes: evidence for seismic faulting along carbonate faults. Terra Nova, 2011, 23, 187-194.	0.9	17
75	Hydrogen Production by Glycerol Steam Reforming with Ruâ€based Catalysts: A Study on Sn Doping. Chemical Vapor Deposition, 2010, 16, 305-310.	1.4	21
76	Improving the quality of 63 Cu/ 65 Cu ratio determination by ICP-QMS through a careful evaluation of instrumental performances. Journal of Analytical Atomic Spectrometry, 2010, 25, 893.	1.6	2
77	High-throughput spatial resolved tests over planar model catalyst libraries: A novel reactor approach. Catalysis Today, 2009, 147, S170-S175.	2.2	3