C S Cockell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8934322/publications.pdf Version: 2024-02-01

		23567	30087
327	14,480	58	103
papers	citations	h-index	g-index
335	335	335	10262
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The Chicxulub Asteroid Impact and Mass Extinction at the Cretaceous-Paleogene Boundary. Science, 2010, 327, 1214-1218.	12.6	1,140
2	Ultraviolet radiation screening compounds. Biological Reviews, 1999, 74, 311-345.	10.4	677
3	Emergence of a Habitable Planet. Space Science Reviews, 2007, 129, 35-78.	8.1	334
4	Exoplanet Biosignatures: A Review of Remotely Detectable Signs of Life. Astrobiology, 2018, 18, 663-708.	3.0	328
5	What makes a planet habitable?. Astronomy and Astrophysics Review, 2009, 17, 181-249.	25.5	281
6	Transient liquid water and water activity at Gale crater on Mars. Nature Geoscience, 2015, 8, 357-361.	12.9	277
7	The Ultraviolet Environment of Mars: Biological Implications Past, Present, and Future. Icarus, 2000, 146, 343-359.	2.5	272
8	Habitability: A Review. Astrobiology, 2016, 16, 89-117.	3.0	246
9	Impact-generated hydrothermal systems on Earth and Mars. Icarus, 2013, 224, 347-363.	2.5	219
10	Biosignatures on Mars: What, Where, and How? Implications for the Search for Martian Life. Astrobiology, 2015, 15, 998-1029.	3.0	209
11	The limits for life under multiple extremes. Trends in Microbiology, 2013, 21, 204-212.	7.7	190
12	The formation of peak rings in large impact craters. Science, 2016, 354, 878-882.	12.6	181
13	Effects of a Simulated Martian UV Flux on the Cyanobacterium, Chroococcidiopsis sp. 029. Astrobiology, 2005, 5, 127-140.	3.0	173
14	Searching for Life on Mars: Selection of Molecular Targets for ESA's Aurora ExoMars Mission. Astrobiology, 2007, 7, 578-604.	3.0	172
15	Cyanobacterial bacteriohopanepolyol signatures from cultures and natural environmental settings. Organic Geochemistry, 2008, 39, 232-263.	1.8	167
16	Microbial Rock Inhabitants Survive Hypervelocity Impacts on Mars-Like Host Planets: First Phase of Lithopanspermia Experimentally Tested. Astrobiology, 2008, 8, 17-44.	3.0	166
17	Biological Effects of High Ultraviolet Radiation on Early Earth—a Theoretical Evaluation. Journal of Theoretical Biology, 1998, 193, 717-729.	1.7	161
18	Multiplication of microbes below 0.690 water activity: implications for terrestrial and extraterrestrial life. Environmental Microbiology, 2015, 17, 257-277.	3.8	131

#	Article	IF	CITATIONS
19	Impactâ€induced microbial endolithic habitats. Meteoritics and Planetary Science, 2002, 37, 1287-1298.	1.6	130
20	The ultraviolet history of the terrestrial planets — implications for biological evolution. Planetary and Space Science, 2000, 48, 203-214.	1.7	123
21	Zones of photosynthetic potential on Mars and the early Earth. Icarus, 2004, 169, 300-310.	2.5	123
22	Survival of lichens and bacteria exposed to outer space conditions – Results of the Lithopanspermia experiments. Icarus, 2010, 208, 735-748.	2.5	123
23	Rapid recovery of life at ground zero of the end-Cretaceous mass extinction. Nature, 2018, 558, 288-291.	27.8	123
24	Ionic Strength Is a Barrier to the Habitability of Mars. Astrobiology, 2016, 16, 427-442.	3.0	122
25	Hypolithic microbial communities: between a rock and a hard place. Environmental Microbiology, 2012, 14, 2272-2282.	3.8	118
26	Widespread colonization by polar hypoliths. Nature, 2004, 431, 414-414.	27.8	114
27	Life on Venus. Planetary and Space Science, 1999, 47, 1487-1501.	1.7	113
28	<i>Darwin</i> —A Mission to Detect and Search for Life on Extrasolar Planets. Astrobiology, 2009, 9, 1-22.	3.0	112
29	Limits of Life and the Habitability of Mars: The ESA Space Experiment BIOMEX on the ISS. Astrobiology, 2019, 19, 145-157.	3.0	111
30	Exposure of phototrophs to 548 days in low Earth orbit: microbial selection pressures in outer space and on early earth. ISME Journal, 2011, 5, 1671-1682.	9.8	108
31	The History of the UV Radiation Climate of the Earth—Theoretical and Space-based Observations¶. Photochemistry and Photobiology, 2001, 73, 447.	2.5	105
32	The biology of impact craters – a review. Biological Reviews, 2002, 77, 279-310.	10.4	98
33	Influence on Photosynthesis of Starlight, Moonlight, Planetlight, and Light Pollution (Reflections on) Tj ETQq1	1 0.784314 3.0	rgð /Overlo
34	EChO. Experimental Astronomy, 2012, 34, 311-353.	3.7	98
35	Experimental methods for studying microbial survival in extraterrestrial environments. Journal of Microbiological Methods, 2010, 80, 1-13.	1.6	95
36	Experimental evidence for the potential impact ejection of viable microorganisms from Mars and Mars-like planets. Icarus, 2007, 186, 585-588.	2.5	87

#	Article	IF	CITATIONS
37	Raman spectroscopic analysis of cyanobacterial gypsum halotrophs and relevance for sulfate deposits on Mars. Analyst, The, 2005, 130, 917.	3.5	84
38	Exploring microbial diversity in volcanic environments: A review of methods in DNA extraction. Journal of Microbiological Methods, 2007, 70, 1-12.	1.6	82
39	Space Station conditions are selective but do not alter microbial characteristics relevant to human health. Nature Communications, 2019, 10, 3990.	12.8	79
40	Why are some microorganisms boring?. Trends in Microbiology, 2008, 16, 101-106.	7.7	78
41	Bacteria in Weathered Basaltic Glass, Iceland. Geomicrobiology Journal, 2009, 26, 491-507.	2.0	78
42	Perchlorates on Mars enhance the bacteriocidal effects of UV light. Scientific Reports, 2017, 7, 4662.	3.3	78
43	Supporting Mars exploration: BIOMEX in Low Earth Orbit and further astrobiological studies on the Moon using Raman and PanCam technology. Planetary and Space Science, 2012, 74, 103-110.	1.7	77
44	Ultraviolet radiation and the photobiology of earth's early oceans. Origins of Life and Evolution of Biospheres, 2000, 30, 467-500.	1.9	76
45	Venturing into new realms? Microorganisms in space. FEMS Microbiology Reviews, 2016, 40, 722-737.	8.6	75
46	Geological overview and cratering model for the Haughton impact structure, Devon Island, Canadian High Arctic. Meteoritics and Planetary Science, 2005, 40, 1759-1776.	1.6	74
47	Darwin—an experimental astronomy mission to search for extrasolar planets. Experimental Astronomy, 2009, 23, 435-461.	3.7	74
48	High precision astrometry mission for the detection and characterization of nearby habitable planetary systems with the Nearby Earth Astrometric Telescope (NEAT). Experimental Astronomy, 2012, 34, 385-413.	3.7	73
49	Carbon Biochemistry and the Ultraviolet Radiation Environments of F, G, and K Main Sequence Stars. Icarus, 1999, 141, 399-407.	2.5	72
50	Trajectories of Martian Habitability. Astrobiology, 2014, 14, 182-203.	3.0	72
51	Swansong biospheres: refuges for life and novel microbial biospheres on terrestrial planets near the end of their habitable lifetimes. International Journal of Astrobiology, 2013, 12, 99-112.	1.6	69
52	Probing the hydrothermal system of the Chicxulub impact crater. Science Advances, 2020, 6, eaaz3053.	10.3	69
53	Earth as a Tool for Astrobiology—A European Perspective. Space Science Reviews, 2017, 209, 43-81.	8.1	68
54	Ultraviolet radiation-induced limitation to epilithic microbial growth in arid deserts – Dosimetric experiments in the hyperarid core of the Atacama Desert. Journal of Photochemistry and Photobiology B: Biology, 2008, 90, 79-87.	3.8	67

#	Article	IF	CITATIONS
55	Space station biomining experiment demonstrates rare earth element extraction in microgravity and Mars gravity. Nature Communications, 2020, 11, 5523.	12.8	67
56	Interplanetary Transfer of Photosynthesis: An Experimental Demonstration of A Selective Dispersal Filter in Planetary Island Biogeography. Astrobiology, 2007, 7, 1-9.	3.0	66
57	Bacterial Diversity of Weathered Terrestrial Icelandic Volcanic Glasses. Microbial Ecology, 2010, 60, 740-752.	2.8	66
58	Survival of Spores of the UV-Resistant <i>Bacillus subtilis</i> Strain MW01 After Exposure to Low-Earth Orbit and Simulated Martian Conditions: Data from the Space Experiment ADAPT on EXPOSE-E. Astrobiology, 2012, 12, 498-507.	3.0	66
59	Astrobiology and the Possibility of Life on Earth and Elsewhere…. Space Science Reviews, 2017, 209, 1-42.	8.1	66
60	Deep Drilling into the Chesapeake Bay Impact Structure. Science, 2008, 320, 1740-1745.	12.6	65
61	<i>Actinobacteria</i> —An Ancient Phylum Active in Volcanic Rock Weathering. Geomicrobiology Journal, 2013, 30, 706-720.	2.0	65
62	Clean access, measurement, and sampling of Ellsworth Subglacial Lake: A method for exploring deep Antarctic subglacial lake environments. Reviews of Geophysics, 2012, 50, .	23.0	63
63	The Role of Meteorite Impacts in the Origin of Life. Astrobiology, 2020, 20, 1121-1149.	3.0	63
64	Identification of Morphological Biosignatures in Martian Analogue Field Specimens Using <i>In Situ</i> Planetary Instrumentation. Astrobiology, 2008, 8, 119-156.	3.0	62
65	Origin and Evolution of Life on Terrestrial Planets. Astrobiology, 2010, 10, 69-76.	3.0	62
66	Nonphotosynthetic Pigments as Potential Biosignatures. Astrobiology, 2015, 15, 341-361.	3.0	61
67	Measurements of microbial protection from ultraviolet radiation in polar terrestrial microhabitats. Polar Biology, 2003, 26, 62-69.	1.2	60
68	Isolation of Novel Extreme-Tolerant Cyanobacteria from a Rock-Dwelling Microbial Community by Using Exposure to Low Earth Orbit. Applied and Environmental Microbiology, 2010, 76, 2115-2121.	3.1	60
69	Damage Escape and Repair in Dried <i>Chroococcidiopsis</i> spp. from Hot and Cold Deserts Exposed to Simulated Space and Martian Conditions. Astrobiology, 2011, 11, 65-73.	3.0	59
70	Cryptic Photosynthesis—Extrasolar Planetary Oxygen Without a Surface Biological Signature. Astrobiology, 2009, 9, 623-636.	3.0	58
71	Uninhabited habitats on Mars. Icarus, 2012, 217, 184-193.	2.5	58
72	Raman spectroscopy of endoliths from Antarctic cold desert environments. Analyst, The, 2005, 130, 156.	3.5	57

#	Article	IF	CITATIONS
73	Alteration textures in terrestrial volcanic glass and the associated bacterial community. Geobiology, 2009, 7, 50-65.	2.4	56
74	Experimental studies addressing the longevity of Bacillus subtilis spores – The first data from a 500-year experiment. PLoS ONE, 2018, 13, e0208425.	2.5	56
75	A Cryptoendolithic Community in Volcanic Glass. Astrobiology, 2009, 9, 369-381.	3.0	55
76	Space as a Tool for Astrobiology: Review and Recommendations for Experimentations in Earth Orbit and Beyond. Space Science Reviews, 2017, 209, 83-181.	8.1	54
77	A Planetary Park system for Mars. Space Policy, 2004, 20, 291-295.	1.5	53
78	Use of cyanobacteria for in-situ resource use in space applications. Planetary and Space Science, 2010, 58, 1279-1285.	1.7	53
79	Influence of ice and snow covers on the UV exposure of terrestrial microbial communities: dosimetric studies. Journal of Photochemistry and Photobiology B: Biology, 2002, 68, 23-32.	3.8	52
80	Control of Lunar and Martian Dust—Experimental Insights from Artificial and Natural Cyanobacterial and Algal Crusts in the Desert of Inner Mongolia, China. Astrobiology, 2008, 8, 75-86.	3.0	51
81	Bacterial Diversity of Terrestrial Crystalline Volcanic Rocks, Iceland. Microbial Ecology, 2011, 62, 69-79.	2.8	51
82	Enabling Martian habitability with silica aerogel via the solid-state greenhouse effect. Nature Astronomy, 2019, 3, 898-903.	10.1	51
83	Life and Light: Exotic Photosynthesis in Binary and Multiple-Star Systems. Astrobiology, 2012, 12, 115-124.	3.0	50
84	Bacterial Colonization and Weathering of Terrestrial Obsidian in Iceland. Geomicrobiology Journal, 2008, 25, 25-37.	2.0	49
85	Swansong biospheres II: the final signs of life on terrestrial planets near the end of their habitable lifetimes. International Journal of Astrobiology, 2014, 13, 229-243.	1.6	49
86	Advancing the case for microbial conservation. Oryx, 2009, 43, 520.	1.0	48
87	The Role of Synthetic Biology for <i>In Situ</i> Resource Utilization (ISRU). Astrobiology, 2012, 12, 1135-1142.	3.0	48
88	Pioneer Microbial Communities of the Fimmvörðuháls Lava Flow, Eyjafjallajökull, Iceland. Microbial Ecology, 2014, 68, 504-518.	2.8	48
89	An Estimate of the Total DNA in the Biosphere. PLoS Biology, 2015, 13, e1002168.	5.6	48
90	The Impact Crater as a Habitat: Effects of Impact Processing of Target Materials. Astrobiology, 2003, 3, 181-191.	3.0	44

#	Article	IF	CITATIONS
91	Genomics: applications to Antarctic ecosystems. Polar Biology, 2005, 28, 351-365.	1.2	44
92	Testing the survival of microfossils in artificial martian sedimentary meteorites during entry into Earth's atmosphere: The STONE 6 experiment. Icarus, 2010, 207, 616-630.	2.5	44
93	The Close-Up Imager Onboard the ESA ExoMars Rover: Objectives, Description, Operations, and Science Validation Activities. Astrobiology, 2017, 17, 595-611.	3.0	44
94	Geomicrobiology beyond Earth: microbe–mineral interactions in space exploration and settlement. Trends in Microbiology, 2010, 18, 308-314.	7.7	43
95	Life in the Atacama: Searching for life with rovers (science overview). Journal of Geophysical Research, 2007, 112, .	3.3	42
96	THE QUEST FOR CRADLES OF LIFE: USING THE FUNDAMENTAL METALLICITY RELATION TO HUNT FOR THE MOST HABITABLE TYPE OF GALAXY. Astrophysical Journal Letters, 2015, 810, L2.	8.3	42
97	Effects of asteroid and comet impacts on habitats for lithophytic organisms-A synthesis. Meteoritics and Planetary Science, 2005, 40, 1901-1914.	1.6	41
98	Plausible microbial metabolisms on Mars. Astronomy and Geophysics, 2013, 54, 1.13-1.16.	0.2	41
99	The BASALT Research Program: Designing and Developing Mission Elements in Support of Human Scientific Exploration of Mars. Astrobiology, 2019, 19, 245-259.	3.0	41
100	'Astrobiology' and the ethics of new science. Interdisciplinary Science Reviews, 2001, 26, 90-96.	1.4	40
101	Hypolithic Colonization of Opaque Rocks in the Arctic and Antarctic Polar Desert. Arctic, Antarctic, and Alpine Research, 2006, 38, 335-342.	1.1	40
102	Glaciovolcanic hydrothermal environments in Iceland and implications for their detection on Mars. Journal of Volcanology and Geothermal Research, 2013, 256, 61-77.	2.1	40
103	Microbial life in the nascent Chicxulub crater. Geology, 2020, 48, 328-332.	4.4	40
104	The rights of microbes. Interdisciplinary Science Reviews, 2004, 29, 141-150.	1.4	38
105	First evidence for a bipolar distribution of dominant freshwater lake bacterioplankton. Antarctic Science, 2007, 19, 245-252.	0.9	38
106	Venus, an Astrobiology Target. Astrobiology, 2021, 21, 1163-1185.	3.0	38
107	Crises and extinction in the fossil record—a role for ultraviolet radiation?. Paleobiology, 1999, 25, 212-225.	2.0	37
108	Exposure of Arctic Field Scientists to Ultraviolet Radiation Evaluated Using Personal Dosimeters. Photochemistry and Photobiology, 2001, 74, 570.	2.5	37

#	Article	IF	CITATIONS
109	Microarray analysis of a microbe–mineral interaction. Geobiology, 2010, 8, 446-456.	2.4	37
110	The effect of rock composition on cyanobacterial weathering of crystalline basalt and rhyolite. Geobiology, 2012, 10, 434-444.	2.4	37
111	Atmospheric Habitable Zones in Y Dwarf Atmospheres. Astrophysical Journal, 2017, 836, 184.	4.5	37
112	Planetary parks—formulating a wilderness policy for planetary bodies. Space Policy, 2006, 22, 256-261.	1.5	36
113	The microbe–mineral environment and gypsum neogenesis in a weathered polar evaporite. Geobiology, 2010, 8, 293-308.	2.4	36
114	Evaluating galactic habitability using high-resolution cosmological simulations of galaxy formation. International Journal of Astrobiology, 2017, 16, 60-73.	1.6	36
115	Laboratory experiments on the weathering of iron meteorites and carbonaceous chondrites by ironâ€oxidizing bacteria. Meteoritics and Planetary Science, 2009, 44, 233-247.	1.6	35
116	Life in (and on) the rocks. Journal of Biosciences, 2012, 37, 3-11.	1.1	35
117	Antarctic Genomics. Comparative and Functional Genomics, 2004, 5, 230-238.	2.0	34
118	Re-evaluating the age of the Haughton impact event. Meteoritics and Planetary Science, 2005, 40, 1777-1787.	1.6	34
119	Viable cold-tolerant iron-reducing microorganisms in geographically diverse subglacial environments. Biogeosciences, 2017, 14, 1445-1455.	3.3	34
120	Shock experiments in support of the Lithopanspermia theory: The influence of host rock composition, temperature, and shock pressure on the survival rate of endolithic and epilithic microorganisms. Meteoritics and Planetary Science, 2011, 46, 701-718.	1.6	33
121	Protective pigmentation in UVB-screened Antarctic lichens studied by Fourier transform Raman spectroscopy: an extremophile bioresponse to radiation stress. Journal of Raman Spectroscopy, 2004, 35, 463-469.	2.5	32
122	Limitations to a microbial iron cycle on Mars. Planetary and Space Science, 2012, 72, 116-128.	1.7	32
123	Habitable worlds with no signs of life. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2014, 372, 20130082.	3.4	32
124	Lifeless Martian samples and their significance. Nature Astronomy, 2019, 3, 468-470.	10.1	32
125	Impact Excavation and the Search for Subsurface Life on Mars. Icarus, 2002, 155, 340-349.	2.5	31
126	Mineralogical alteration of artificial meteorites during atmospheric entry. The STONE-5 experiment. Planetary and Space Science, 2008, 56, 976-984.	1.7	31

#	Article	IF	CITATIONS
127	New Priorities in the Robotic Exploration of Mars: The Case for <i>In Situ</i> Search for Extant Life. Astrobiology, 2010, 10, 705-710.	3.0	31
128	The EChO science case. Experimental Astronomy, 2015, 40, 329-391.	3.7	31
129	Impact shocked rocks as protective habitats on an anoxic early Earth. International Journal of Astrobiology, 2015, 14, 115-122.	1.6	31
130	The Development of an Effective Bacterial Single-Cell Lysis Method Suitable for Whole Genome Amplification in Microfluidic Platforms. Micromachines, 2018, 9, 367.	2.9	31
131	Metallomics in deep time and the influence of ocean chemistry on the metabolic landscapes of Earth's earliest ecosystems. Scientific Reports, 2020, 10, 4965.	3.3	31
132	"Ultraviolet spring" and the ecological consequences of catastrophic impacts. Ecology Letters, 2000, 3, 77-81.	6.4	30
133	Impact Disruption and Recovery of the Deep Subsurface Biosphere. Astrobiology, 2012, 12, 231-246.	3.0	30
134	Land coverage influences the bacterial community composition in the critical zone of a sub-Arctic basaltic environment. FEMS Microbiology Ecology, 2013, 86, 381-393.	2.7	30
135	Surface flux patterns on planets in circumbinary systems and potential for photosynthesis. International Journal of Astrobiology, 2015, 14, 465-478.	1.6	30
136	No Effect of Microgravity and Simulated Mars Gravity on Final Bacterial Cell Concentrations on the International Space Station: Applications to Space Bioproduction. Frontiers in Microbiology, 2020, 11, 579156.	3.5	29
137	Planetary protectionâ \in "A microbial ethics approach. Space Policy, 2005, 21, 287-292.	1.5	28
138	Molecular Characterization and Geological Microenvironment of a Microbial Community Inhabiting Weathered Receding Shale Cliffs. Microbial Ecology, 2011, 61, 166-181.	2.8	28
139	Polar endoliths – an anti-correlation of climatic extremes and microbial biodiversity. International Journal of Astrobiology, 2002, 1, 305-310.	1.6	27
140	Description of Tessaracoccus profundi sp.nov., a deep-subsurface actinobacterium isolated from a Chesapeake impact crater drill core (940Âm depth). Antonie Van Leeuwenhoek, 2009, 96, 515-526.	1.7	27
141	Chesapeake Bay impact structure drilled. Eos, 2006, 87, 349.	0.1	26
142	An Ionic Limit to Life in the Deep Subsurface. Frontiers in Microbiology, 2019, 10, 426.	3.5	26
143	Visualizing the invisible: class excursions to ignite children's enthusiasm for microbes. Microbial Biotechnology, 2020, 13, 844-887.	4.2	26
144	The smallest space miners: principles of space biomining. Extremophiles, 2022, 26, 7.	2.3	26

#	Article	IF	CITATIONS
145	Ultraviolet radiation, evolution and the π-electron system. Biological Journal of the Linnean Society, 1998, 63, 449-457.	1.6	25
146	In Search of Future Earths: Assessing the Possibility of Finding Earth Analogues in the Later Stages of Their Habitable Lifetimes. Astrobiology, 2015, 15, 400-411.	3.0	25
147	Lack of correlation of desiccation and radiation tolerance in microorganisms from diverse extreme environments tested under anoxic conditions. FEMS Microbiology Letters, 2018, 365, .	1.8	25
148	Basaltic Terrains in Idaho and Hawaiâ€~i as Planetary Analogs for Mars Geology and Astrobiology. Astrobiology, 2019, 19, 260-283.	3.0	25
149	Explosive interaction of impact melt and seawater following the Chicxulub impact event. Geology, 2020, 48, 108-112.	4.4	25
150	Reduction of the Temperature Sensitivity of Halomonas hydrothermalis by Iron Starvation Combined with Microaerobic Conditions. Applied and Environmental Microbiology, 2015, 81, 2156-2162.	3.1	24
151	ORIGIN: a novel and compact Laser Desorption – Mass Spectrometry system for sensitive in situ detection of amino acids on extraterrestrial surfaces. Scientific Reports, 2020, 10, 9641.	3.3	24
152	Astrobiological instrumentation for Mars – the only way is down. International Journal of Astrobiology, 2002, 1, 365-380.	1.6	23
153	Radiative habitable zones in martian polar environments. Icarus, 2005, 175, 360-371.	2.5	23
154	Vacant habitats in the Universe. Trends in Ecology and Evolution, 2011, 26, 73-80.	8.7	23
155	BioRock: new experiments and hardware to investigate microbe–mineral interactions in space. International Journal of Astrobiology, 2018, 17, 303-313.	1.6	22
156	Solar UV Irradiation Conditions on the Surface of Mars¶. Photochemistry and Photobiology, 2003, 77, 34.	2.5	22
157	Raman spectroscopy of senescing snow algae: pigmentation changes in an Antarctic cold desert extremophile. International Journal of Astrobiology, 2004, 3, 125-129.	1.6	21
158	Following the Kinetics: Iron-Oxidizing Microbial Mats in Cold Icelandic Volcanic Habitats and Their Rock-Associated Carbonaceous Signature. Astrobiology, 2011, 11, 679-694.	3.0	21
159	Are thermophilic microorganisms active in cold environments?. International Journal of Astrobiology, 2015, 14, 457-463.	1.6	21
160	PELS (Planetary Environmental Liquid Simulator): A New Type of Simulation Facility to Study Extraterrestrial Aqueous Environments. Astrobiology, 2015, 15, 111-118.	3.0	21
161	Anaerobic microorganisms in astrobiological analogue environments: from field site to culture collection. International Journal of Astrobiology, 2018, 17, 314-328.	1.6	21
162	Growth, Viability, and Death of Planktonic and Biofilm <i>Sphingomonas desiccabilis</i> in Simulated Martian Brines. Astrobiology, 2019, 19, 87-98.	3.0	21

#	Article	IF	CITATIONS
163	Molecular Characterization of Prokaryotic Communities Associated with Lonar Crater Basalts. Geomicrobiology Journal, 2014, 31, 519-528.	2.0	20
164	Building a Geochemical View of Microbial Salt Tolerance: Halophilic Adaptation of Marinococcus in a Natural Magnesium Sulfate Brine. Frontiers in Microbiology, 2018, 9, 739.	3.5	20
165	Microbially-Enhanced Vanadium Mining and Bioremediation Under Micro- and Mars Gravity on the International Space Station. Frontiers in Microbiology, 2021, 12, 641387.	3.5	20
166	Heterotrophic microbial colonization of the interior of impact-shocked rocks from Haughton impact structure, Devon Island, Nunavut, Canadian High Arctic. International Journal of Astrobiology, 2002, 1, 311-323.	1.6	19
167	Survival of <i>Deinococcus radiodurans</i> Against Laboratory-Simulated Solar Wind Charged Particles. Astrobiology, 2011, 11, 875-882.	3.0	19
168	Preliminary Analysis of Life within a Former Subglacial Lake Sediment in Antarctica. Diversity, 2013, 5, 680-702.	1.7	19
169	Cyanobacteria isolated from the high-intertidal zone: a model for studying the physiological prerequisites for survival in low Earth orbit. International Journal of Astrobiology, 2013, 12, 292-303.	1.6	19
170	Planetary science and exploration in the deep subsurface: results from the MINAR Program, Boulby Mine, UK. International Journal of Astrobiology, 2017, 16, 114-129.	1.6	19
171	The Impact of Space Flight on Survival and Interaction of Cupriavidus metallidurans CH34 with Basalt, a Volcanic Moon Analog Rock. Frontiers in Microbiology, 2017, 8, 671.	3.5	19
172	Detectability of biosignatures in a low-biomass simulation of martian sediments. Scientific Reports, 2019, 9, 9706.	3.3	19
173	A Low-Diversity Microbiota Inhabits Extreme Terrestrial Basaltic Terrains and Their Fumaroles: Implications for the Exploration of Mars. Astrobiology, 2019, 19, 284-299.	3.0	19
174	Microbiology and Vegetation of Micro-oases and Polar Desert, Haughton Impact Crater, Devon Island, Nunavut, Canada. Arctic, Antarctic, and Alpine Research, 2001, 33, 306-318.	1.1	18
175	Biological UV dosimetry using the DLR-biofilm. Photochemical and Photobiological Sciences, 2004, 3, 781.	2.9	18
176	Astrobiology—What Can We Do on the Moon?. Earth, Moon and Planets, 2010, 107, 3-10.	0.6	18
177	Synthetic geomicrobiology: engineering microbe–mineral interactions for space exploration and settlement. International Journal of Astrobiology, 2011, 10, 315-324.	1.6	18
178	Rock geochemistry induces stress and starvation responses in the bacterial proteome. Environmental Microbiology, 2016, 18, 1110-1121.	3.8	18
179	Polar Winter: A Biological Model for Impact Events and Related Dark/Cold Climatic Changes. Climatic Change, 1999, 41, 151-173.	3.6	17
180	Photobiological uncertainties in the Archaean and post-Archaean world. International Journal of Astrobiology, 2002, 1, 31-38.	1.6	17

#	Article	IF	CITATIONS
181	Experiments on Mixotrophic Protists and Catastrophic Darkness. Astrobiology, 2009, 9, 563-571.	3.0	17
182	Mineralization and Preservation of an extremotolerant Bacterium Isolated from an Early Mars Analog Environment. Scientific Reports, 2017, 7, 8775.	3.3	17
183	Subsurface scientific exploration of extraterrestrial environments (MINAR 5): analogue science, technology and education in the Boulby Mine, UK. International Journal of Astrobiology, 2019, 18, 157-182.	1.6	17
184	When is Life a Viable Hypothesis? The Case of Venusian Phosphine. Astrobiology, 2021, 21, 261-264.	3.0	17
185	Ethics and extraterrestrial life. Studies in Space Policy, 2011, , 80-101.	0.3	17
186	The responses of an anaerobic microorganism, Yersinia intermedia MASE-LG-1 to individual and combined simulated Martian stresses. PLoS ONE, 2017, 12, e0185178.	2.5	17
187	The UV environment of the Beagle 2 landing site: detailed investigations and detection of atmospheric state. Icarus, 2004, 168, 93-115.	2.5	16
188	Lunar Astrobiology: A Review and Suggested Laboratory Equipment. Astrobiology, 2007, 7, 767-782.	3.0	16
189	Geomicrobiology of a Weathering Crust from an Impact Crater and a Hypothesis for its Formation. Geomicrobiology Journal, 2007, 24, 425-440.	2.0	16
190	Responseâ€"Cretaceous Extinctions. Science, 2010, 328, 975-976.	12.6	16
191	Microbial Markers Profile in Anaerobic Mars Analogue Environments Using the LDChip (Life Detector) Tj ETQq1 1 7, 365.	0.784314 3.6	rgBT /Over 16
192	Tactical Scientific Decision-Making during Crewed Astrobiology Mars Missions. Astrobiology, 2019, 19, 369-386.	3.0	16
193	Strategic Planning Insights for Future Science-Driven Extravehicular Activity on Mars. Astrobiology, 2019, 19, 347-368.	3.0	16
194	Preliminary Planning for Mars Sample Return (MSR) Curation Activities in a Sample Receiving Facility (SRF). Astrobiology, 2022, 22, S-57-S-80.	3.0	16
195	On the plausibility of a UV transparent biochemistry. Origins of Life and Evolution of Biospheres, 2002, 32, 255-274.	1.9	15
196	Impact-shocked rocks – insights into archean and extraterrestrial microbial habitats (and sites for) Tj ETQq0 0 () rgBT /Ov	erlock 10 Tf
197	The evolutionary and ecological benefits of asteroid and comet impacts. Trends in Ecology and Evolution, 2005, 20, 175-179.	8.7	15

198Impactâ€induced impoverishment and transformation of a sandstone habitat for lithophytic1.615198microorganisms. Meteoritics and Planetary Science, 2007, 42, 1985-1993.1.615

#	Article	IF	CITATIONS
199	Types of habitat in the Universe. International Journal of Astrobiology, 2014, 13, 158-164.	1.6	15
200	Biogeochemical probing of microbial communities in a basaltâ€hosted hot spring at Kverkfjöll volcano, Iceland. Geobiology, 2018, 16, 507-521.	2.4	15
201	Developing Intra-EVA Science Support Team Practices for a Human Mission to Mars. Astrobiology, 2019, 19, 387-400.	3.0	15
202	The Detection of Elemental Signatures of Microbes in Martian Mudstone Analogs Using High Spatial Resolution Laser Ablation Ionization Mass Spectrometry. Astrobiology, 2020, 20, 1224-1235.	3.0	15
203	ENVIRONMENTAL ETHICS AND SIZE. Ethics and the Environment, 2008, 13, 23-39.	0.4	15
204	Final Report of the Mars Sample Return Science Planning Group 2 (MSPG2). Astrobiology, 2022, 22, S-5-S-26.	3.0	15
205	Planetary targets in the search for extrasolar oxygenic photosynthesis. Plant Ecology and Diversity, 2009, 2, 207-219.	2.4	14
206	Microbial rights?. EMBO Reports, 2011, 12, 181-181.	4.5	14
207	The Microbial Habitability of Weathered Volcanic Glass Inferred from Continuous Sensing Techniques. Astrobiology, 2011, 11, 651-664.	3.0	14
208	Epifluorescence, SEM, TEM and nanoSIMS image analysis of the cold phenotype of <i>Clostridium psychrophilum </i> at subzero temperatures. FEMS Microbiology Ecology, 2014, 90, 869-882.	2.7	14
209	Yâ€Mars: An Astrobiological Analogue of Martian Mudstone. Earth and Space Science, 2018, 5, 163-174.	2.6	14
210	High pressures increase α-chymotrypsin enzyme activity under perchlorate stress. Communications Biology, 2020, 3, 550.	4.4	14
211	Taxonomic and functional analyses of intact microbial communities thriving in extreme, astrobiology-relevant, anoxic sites. Microbiome, 2021, 9, 50.	11.1	14
212	Rationale and Proposed Design for a Mars Sample Return (MSR) Science Program. Astrobiology, 2022, 22, S-27-S-56.	3.0	14
213	THE MARTIAN AND EXTRATERRESTRIAL UV RADIATION ENVIRONMENT PART II: FURTHER CONSIDERATIONS ON MATERIALS AND DESIGN CRITERIA FOR ARTIFICIAL ECOSYSTEMS. Acta Astronautica, 2001, 49, 631-640.	3.2	13
214	A postulate to assess â€~habitability'. International Journal of Astrobiology, 2004, 3, 157-163.	1.6	13
215	11. The subsurface habitability of terrestrial rocky planets: Mars. , 2014, , 225-260.		13
216	Impact-Generated Endolithic Habitat Within Crystalline Rocks of the Haughton Impact Structure, Devon Island, Canada. Astrobiology, 2014, 14, 522-533.	3.0	13

#	Article	IF	CITATIONS
217	Contamination assessment in microbiological sampling of the Eyreville core, Chesapeake Bay impact structure. , 2009, , .		13
218	Coupling of climate change and biotic UV exposure through changing snow-ice covers in terrestrial habitats. Photochemistry and Photobiology, 2004, 79, 26-31.	2.5	13
219	Mars is an awful place to live. Interdisciplinary Science Reviews, 2002, 27, 32-38.	1.4	12
220	Weathering of Post-Impact Hydrothermal Deposits from the Haughton Impact Structure: Implications for Microbial Colonization and Biosignature Preservation. Astrobiology, 2011, 11, 537-550.	3.0	12
221	Life in the lithosphere, kinetics and the prospects for life elsewhere. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2011, 369, 516-537.	3.4	12
222	Aerobically respiring prokaryotic strains exhibit a broader temperature–pH–salinity space for cell division than anaerobically respiring and fermentative strains. Journal of the Royal Society Interface, 2015, 12, 20150658.	3.4	12
223	An ESA roadmap for geobiology in space exploration. Acta Astronautica, 2016, 118, 286-295.	3.2	12
224	The Habitat of the Nascent Chicxulub Crater. AGU Advances, 2020, 1, e2020AV000208.	5.4	12
225	Impact of Simulated Martian Conditions on (Facultatively) Anaerobic Bacterial Strains from Different Mars Analogue Sites. Current Issues in Molecular Biology, 2020, 38, 103-122.	2.4	12
226	Astrobiology—a new opportunity for interdisciplinary thinking. Space Policy, 2002, 18, 263-266.	1.5	11
227	Boulby International Subsurface Astrobiology Laboratory. Astronomy and Geophysics, 2013, 54, 2.25-2.27.	0.2	11
228	Fourier Transform Infrared Spectral Detection of Life in Polar Subsurface Environments and its Application to Mars Exploration. Applied Spectroscopy, 2015, 69, 1059-1065.	2.2	11
229	Habitability is a binary property. Nature Astronomy, 2019, 3, 956-957.	10.1	11
230	Biologically Available Chemical Energy in the Temperate but Uninhabitable Venusian Cloud Layer: What Do We Want to Know?. Astrobiology, 2021, 21, 1224-1236.	3.0	11
231	A Systematic Study of the Limits of Life in Mixed Ion Solutions: Physicochemical Parameters Do Not Predict Habitability. Frontiers in Microbiology, 2020, 11, 1478.	3.5	10
232	The Effects of Temperature and Pressure on Protein-Ligand Binding in the Presence of Mars-Relevant Salts. Biology, 2021, 10, 687.	2.8	10
233	Expedition 364 methods. Proceedings of the International Ocean Discovery Program, 0, , .	0.0	10
234	Instantaneous Habitable Windows in the Parameter Space of Enceladus' Ocean. Journal of Geophysical Research E: Planets, 2021, 126, e2021JE006951.	3.6	10

#	Article	IF	CITATIONS
235	Time-Sensitive Aspects of Mars Sample Return (MSR) Science. Astrobiology, 2021, , .	3.0	10
236	Vanguard—a European robotic astrobiology-focussed Mars sub-surface mission proposal. Acta Astronautica, 2005, 56, 397-407.	3.2	9
237	Pore-water chemistry from the ICDP-USCS core hole in the Chesapeake Bay impact structure—Implications for paleohydrology, microbial habitat, and water resources. , 2009, , .		9
238	Martian Polar Expeditions: Problems and Solutions. Acta Astronautica, 2001, 49, 693-706.	3.2	8
239	Diverse microbial species survive high ammonia concentrations. International Journal of Astrobiology, 2012, 11, 125-131.	1.6	8
240	The effects of meteorite impacts on the availability of bioessential elements for endolithic organisms. Meteoritics and Planetary Science, 2012, 47, 1681-1691.	1.6	8
241	The similarity of life across the universe. Molecular Biology of the Cell, 2016, 27, 1553-1555.	2.1	8
242	Liquid Water Restricts Habitability in Extreme Deserts. Astrobiology, 2017, 17, 309-318.	3.0	8
243	Shaping of the Present-Day Deep Biosphere at Chicxulub by the Impact Catastrophe That Ended the Cretaceous. Frontiers in Microbiology, 2021, 12, 668240.	3.5	8
244	Effect of cyanobacterial growth on biotite surfaces under laboratory nutrient-limited conditions. Mineralogical Magazine, 2008, 72, 71-75.	1.4	7
245	Microbial Diversity of Impact-Generated Habitats. Astrobiology, 2016, 16, 775-786.	3.0	7
246	Rapid colonization of artificial endolithic uninhabited habitats. International Journal of Astrobiology, 2018, 17, 386-401.	1.6	7
247	Beyond Chloride Brines: Variable Metabolomic Responses in the Anaerobic Organism Yersinia intermedia MASE-LG-1 to NaCl and MgSO4 at Identical Water Activity. Frontiers in Microbiology, 2018, 9, 335.	3.5	7
248	Aggregated Cell Masses Provide Protection against Space Extremes and a Microhabitat for Hitchhiking Co-Inhabitants. Astrobiology, 2019, 19, 995-1007.	3.0	7
249	A bioenergetic model to predict habitability, biomass and biosignatures in astrobiology and extreme conditions. Journal of the Royal Society Interface, 2020, 17, 20200588.	3.4	7
250	0.25 Ga Salt Deposits Preserve Signatures of Habitable Conditions and Ancient Lipids. Astrobiology, 2020, 20, 864-877.	3.0	7
251	Bridging the gap between microbial limits and extremes in space: space microbial biotechnology in the next 15 years. Microbial Biotechnology, 2022, 15, 29-41.	4.2	7
252	The Effects of UV Radiation A and B on Diurnal Variation in Photosynthesis in Three Taxonomically and Ecologically Diverse Microbial Mats. Photochemistry and Photobiology, 1999, 69, 203.	2.5	7

#	Article	IF	CITATIONS
253	Mars: new insights and unresolved questions – Corrigendum. International Journal of Astrobiology, 2022, 21, 46-46.	1.6	7
254	Planning Implications Related to Sterilization-Sensitive Science Investigations Associated with Mars Sample Return (MSR). Astrobiology, 2022, 22, S-112-S-164.	3.0	7
255	Science and Curation Considerations for the Design of a Mars Sample Return (MSR) Sample Receiving Facility (SRF). Astrobiology, 2022, 22, S-217-S-237.	3.0	7
256	Human exposure to ultraviolet radiation at the Antipodes - a comparison between an Antarctic (67°S) and Arctic (75°N) location. Polar Biology, 2002, 25, 492-499.	1.2	6
257	Application Of Organic Geochemistry To Detect Signatures Of Organic Matter In The Haughton Impact Structure. Meteoritics and Planetary Science, 2005, 40, 1879-1885.	1.6	6
258	Nonproteinogenic D-Amino Acids at Millimolar Concentrations Are a Toxin for Anaerobic Microorganisms Relevant to Early Earth and Other Anoxic Planets. Astrobiology, 2015, 15, 238-246.	3.0	6
259	Decontamination of geological samples by gas cluster ion beam etching or ultra violet/ozone. Chemical Geology, 2017, 466, 256-262.	3.3	6
260	Sample Collection and Return from Mars: Optimising Sample Collection Based on the Microbial Ecology of Terrestrial Volcanic Environments. Space Science Reviews, 2019, 215, 1.	8.1	6
261	Biogeography, Ecology, and Evolution of Deep Life. , 2019, , 524-555.		6
262	Structural responses of model biomembranes to Mars-relevant salts. Physical Chemistry Chemical Physics, 2021, 23, 14212-14223.	2.8	6
263	Perchlorate Salts Exert a Dominant, Deleterious Effect on the Structure, Stability, and Activity of α-Chymotrypsin. Astrobiology, 2021, 21, 405-412.	3.0	6
264	Minimum Units of Habitability and Their Abundance in the Universe. Astrobiology, 2021, 21, 481-489.	3.0	6
265	A Proposed Geobiology-Driven Nomenclature for Astrobiological <i>In Situ</i> Observations and Sample Analyses. Astrobiology, 2021, 21, 954-967.	3.0	6
266	Whole genome sequencing of cyanobacterium Nostoc sp. CCCryo 231-06 using microfluidic single cell technology. IScience, 2022, 25, 104291.	4.1	6
267	Protection from UV Radiation in the Economic Crop, Opuntia Spp. Economic Botany, 2004, 58, S88-S100.	1.7	5
268	A pilot survey of attitudes to space sciences and exploration among British school children. Space Policy, 2007, 23, 20-23.	1.5	5
269	Interstellar planetary protection. Advances in Space Research, 2008, 42, 1161-1165.	2.6	5
270	Introduction: Volcanism and Astrobiology: Life on Earth and Beyond. Astrobiology, 2011, 11, 583-584.	3.0	5

#	Article	IF	CITATIONS
271	The UK Centre for Astrobiology: A Virtual Astrobiology Centre. Accomplishments and Lessons Learned, 2011–2016. Astrobiology, 2018, 18, 224-243.	3.0	5
272	Effects of rapid depressurisation on the structural integrity of common foodstuffs. Acta Astronautica, 2019, 160, 606-614.	3.2	5
273	pH Influences the Distribution of Microbial Rock-Weathering Phenotypes in Weathered Shale Environments. Geomicrobiology Journal, 2019, 36, 752-763.	2.0	5
274	The organic stratigraphy of Ontong Java Plateau Tuff correlated with the depthâ€related presence and absence of putative microbial alteration structures. Geobiology, 2019, 17, 281-293.	2.4	5
275	The Biological Study of Lifeless Worlds and Environments. Astrobiology, 2021, 21, 490-504.	3.0	5
276	Perchlorate salts confer psychrophilic characteristics in α-chymotrypsin. Scientific Reports, 2021, 11, 16523.	3.3	5
277	The Scientific Importance of Returning Airfall Dust as a Part of Mars Sample Return (MSR). Astrobiology, 2022, 22, S-176-S-185.	3.0	5
278	Field geology on the Moon: Some lessons learned from the exploration of the Haughton impact structure, Devon Island, Canadian High Arctic. Planetary and Space Science, 2010, 58, 646-657.	1.7	4
279	Microbial diversity in Calamita ferromagnetic sand. Environmental Microbiology Reports, 2011, 3, 483-490.	2.4	4
280	Salinity Influences the Response of <i>Halomonas hydrothermalis</i> to Artificial Fossilization by Evaporative Silicification. Geomicrobiology Journal, 2016, 33, 377-386.	2.0	4
281	Astrobiology as a framework for investigating antibiotic susceptibility: a study of Halomonas hydrothermalis. Journal of the Royal Society Interface, 2017, 14, 20160942.	3.4	4
282	Subsurface robotic exploration for geomorphology, astrobiology and mining during MINAR6 campaign, Boulby Mine, UK: part I (Rover development). International Journal of Astrobiology, 2020, 19, 110-125.	1.6	4
283	Are microorganisms everywhere they can be?. Environmental Microbiology, 2021, 23, 6355-6363.	3.8	4
284	A scientific response to small asteroid and comet impacts. Interdisciplinary Science Reviews, 2003, 28, 74-75.	1.4	3
285	The uses of Martian ice. Interdisciplinary Science Reviews, 2004, 29, 395-407.	1.4	3
286	Microbe–mineral interactions in naturally radioactive beach sands from Espirito Santo, Brazil: experiments on mutagenicity. Radiation and Environmental Biophysics, 2007, 46, 247-253.	1.4	3
287	The Interlayer Regions of Sheet Silicates as a Favorable Habitat for Endolithic Microorganisms. Geomicrobiology Journal, 2015, 32, 530-537.	2.0	3
288	Geological repositories: scientific priorities and potential high-technology transfer from the space and physics sectors. Mineralogical Magazine, 2015, 79, 1651-1664.	1.4	3

#	Article	IF	CITATIONS
289	Mesophilic Mineral-Weathering Bacteria Inhabit the Critical-Zone of a Perennially Cold Basaltic Environment. Geomicrobiology Journal, 2016, 33, 52-62.	2.0	3
290	Biosignatures for Astrobiology. Origins of Life and Evolution of Biospheres, 2016, 46, 105-106.	1.9	3
291	The Janus face of iron on anoxic worlds: iron oxides are both protective and destructive to life on the early Earth and present-day Mars. FEMS Microbiology Ecology, 2017, 93, .	2.7	3
292	Evidence For <i>In Vitro</i> and <i>In Situ</i> Pyrite Weathering By Microbial Communities Inhabiting Weathered Shale. Geomicrobiology Journal, 2019, 36, 600-611.	2.0	3
293	Persistence of Habitable, but Uninhabited, Aqueous Solutions and the Application to Extraterrestrial Environments. Astrobiology, 2020, 20, 617-627.	3.0	3
294	Development of a compact water activity sensor system for planetary exploration. Planetary and Space Science, 2021, 195, 105132.	1.7	3
295	Habitability Models for Planetary Sciences. , 2021, 53, .		3
296	A meta-analysis of the activity, stability, and mutational characteristics of temperature-adapted enzymes. Bioscience Reports, 2021, 41, .	2.4	3
297	The Ethical Relevance of Earth-like Extrasolar Planets. Environmental Ethics, 2006, 28, 303-314.	0.4	3
298	Ions in the Deep Subsurface of Earth, Mars, and Icy Moons: Their Effects in Combination with Temperature and Pressure on tRNA–Ligand Binding. International Journal of Molecular Sciences, 2021, 22, 10861.	4.1	3
299	Growth of Non-Halophilic Bacteria in the Sodium–Magnesium–Sulfate–Chloride Ion System: Unravelling the Complexities of Ion Interactions in Terrestrial and Extraterrestrial Aqueous Environments. Astrobiology, 2020, 20, 944-955.	3.0	3
300	Habitability Is Binary, But It Is Used by Astrobiologists to Encompass Continuous Ecological Questions. Astrobiology, 2022, 22, 7-13.	3.0	3
301	Structural Responses of Nucleic Acids to Mars-Relevant Salts at Deep Subsurface Conditions. Life, 2022, 12, 677.	2.4	3
302	Paleolimnology in the High Arctic $\hat{a} \in$ " implications for the exploration of Mars. International Journal of Astrobiology, 2002, 1, 381-386.	1.6	2
303	Life Beyond: planning for Mars in prisons. Astronomy and Geophysics, 2018, 59, 4.32-4.35.	0.2	2
304	Using exoplanets to test the universality of biology. Nature Astronomy, 2018, 2, 758-759.	10.1	2
305	Freedom Engineering – Using Engineering to Mitigate Tyranny in Space. Space Policy, 2019, 49, 101328.	1.5	2
306	Astronomy + biology. Astronomy and Geophysics, 2020, 61, 3.28-3.32.	0.2	2

#	Article	IF	CITATIONS
307	Transient liquid water and water activity at Gale crater on Mars. , 0, .		2
308	Meteorites as Food Source on Early Earth: Growth, Selection, and Inhibition of a Microbial Community on a Carbonaceous Chondrite. Astrobiology, 2022, 22, 495-508.	3.0	2
309	The science and scientific legacy of Operation Chastise. Interdisciplinary Science Reviews, 2002, 27, 278-286.	1.4	1
310	A Scientific Impact Response Team for the Aftermath of Small Asteroid and Comet Impacts. Science and Global Security, 2005, 13, 105-115.	0.3	1
311	The Microbial Stages of Humanity. Interdisciplinary Science Reviews, 2011, 36, 301-313.	1.4	1
312	Swansong Biospheres: The biosignatures of inhabited earth-like planets nearing the end of their habitable lifetimes. Proceedings of the International Astronomical Union, 2013, 8, 378-379.	0.0	1
313	Where Do We Go from Here? <i>Astrobiology</i> Editorial Board Opinions. Astrobiology, 2014, 14, 629-644.	3.0	1
314	Aeolian abrasion of rocks as a mechanism to produce methane in the Martian atmosphere. Scientific Reports, 2019, 9, 8229.	3.3	1
315	Planning the Human Future Beyond Earth with the Prison Population: The <i>Life Beyond</i> Project. Astrobiology, 2021, 21, 1438-1449.	3.0	1
316	Microbial Life in Impact Craters. Current Issues in Molecular Biology, 2020, 38, 75-102.	2.4	1
317	Orbiting Sample Tiger Team Recommendation on Orbiting Sample Cleanliness. Astrobiology, 2021, , .	3.0	1
318	Meteorites: beneficial or toxic for life on Early Earth? Growth of an anaerobic microbial community on a carbonaceous chondrite. Access Microbiology, 2022, 4, .	0.5	1
319	Biological systems under extreme conditions: structure and function. Y. Taniguchi, H. E. Stanley and H. Ludwig, eds Springer, Berlin (2002) 282 pages · Price â,¬69.95 · ISBN 3-540-65992-7. International Journal of Astrobiology, 2002, 1, 177-177.	1.6	0
320	Fostering links between environmental and space exploration: the Earth and Space Foundation. Space Policy, 2002, 18, 301-306.	1.5	0
321	Mutually assured pathogenicity. Interdisciplinary Science Reviews, 2007, 32, 7-10.	1.4	0
322	AFestschriftin honour of Professor John A. Raven. Plant Ecology and Diversity, 2009, 2, 107-110.	2.4	0
323	Martin Brasier (1947–2014): astrobiologist. International Journal of Astrobiology, 2015, 14, 527-531.	1.6	0
324	Glaciovolcanism on Earth and Mars: products, processes and palaeoenvironmental significance J.L. Smellie & B.R. Edwards Cambridge University Press, Cambridge. 2016. ISBN-13: 978-1107037397. hbk, 490 pp. £112. Antarctic Science, 2018, 30, 329-329.	0.9	0

#	Article	IF	CITATIONS
325	Casamino acids slow motility and stimulate surface growth in an extreme oligotroph. Environmental Microbiology Reports, 2020, 12, 63-69.	2.4	Ο
326	Subsurface robotic exploration for geomorphology, astrobiology and mining during MINAR6 campaign, Boulby Mine, UK: part II (Results and Discussion). International Journal of Astrobiology, 2021, 20, 93-108.	1.6	0
327	Site M0077: microbiology. Proceedings of the International Ocean Discovery Program, 0, , .	0.0	Ο