Gongning Luo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8934311/publications.pdf

Version: 2024-02-01

713013 840119 29 571 11 21 citations h-index g-index papers 29 29 29 759 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Hematoma Expansion Context Guided Intracranial Hemorrhage Segmentation and Uncertainty Estimation. IEEE Journal of Biomedical and Health Informatics, 2022, 26, 1140-1151.	3.9	7
2	Uncertaintyâ€guided symmetric multiâ€level supervision network for 3D left atrium segmentation in late gadoliniumâ€enhanced MRI. Medical Physics, 2022, , .	1.6	3
3	Performance of novel deep learning network with the incorporation of the automatic segmentation network for diagnosis of breast cancer in automated breast ultrasound. European Radiology, 2022, 32, 7163-7172.	2.3	6
4	Transformer Network for Significant Stenosis Detection in CCTA of Coronary Arteries. Lecture Notes in Computer Science, 2021, , 516-525.	1.0	14
5	Commensal correlation network between segmentation and direct area estimation for bi-ventricle quantification. Medical Image Analysis, 2020, 59, 101591.	7.0	21
6	The Role of CaMKII Overexpression and Oxidation in Atrial Fibrillationâ€"A Simulation Study. Frontiers in Physiology, 2020, 11, 607809.	1.3	4
7	Deep Atlas Network for Efficient 3D Left Ventricle Segmentation on Echocardiography. Medical Image Analysis, 2020, 61, 101638.	7.0	38
8	An Automatic Cardiac Segmentation Framework Based on Multi-sequence MR Image. Lecture Notes in Computer Science, 2020, , 220-227.	1.0	9
9	Multi-step Cascaded Networks for Brain Tumor Segmentation. Lecture Notes in Computer Science, 2020, , 163-173.	1.0	27
10	Dynamically constructed network with error correction for accurate ventricle volume estimation. Medical Image Analysis, 2020, 64, 101723.	7.0	9
11	Branch-Aware Double DQN for Centerline Extraction in Coronary CT Angiography. Lecture Notes in Computer Science, 2020, , 35-44.	1.0	5
12	Cancelable biometric authentication system based on ECG. Multimedia Tools and Applications, 2019, 78, 1857-1887.	2.6	44
13	A Deep Reinforcement Learning Framework for Frame-by-Frame Plaque Tracking on Intravascular Optical Coherence Tomography Image. Lecture Notes in Computer Science, 2019, , 12-20.	1.0	3
14	Concatenated and Connected Random Forests With Multiscale Patch Driven Active Contour Model for Automated Brain Tumor Segmentation of MR Images. IEEE Transactions on Medical Imaging, 2018, 37, 1943-1954.	5 . 4	145
15	Multi-Views Fusion CNN for Left Ventricular Volumes Estimation on Cardiac MR Images. IEEE Transactions on Biomedical Engineering, 2018, 65, 1924-1934.	2.5	51
16	A Combined Fully Convolutional Networks and Deformable Model for Automatic Left Ventricle Segmentation Based on 3D Echocardiography. BioMed Research International, 2018, 2018, 1-16.	0.9	25
17	VoxelAtlasGAN: 3D Left Ventricle Segmentation on Echocardiography with Atlas Guided Generation and Voxel-to-Voxel Discrimination. Lecture Notes in Computer Science, 2018, , 622-629.	1.0	18
18	A Novel Reconstruction Method of 3D Heart Geometry Atlas Based on Visible Human., 2017,,.		0

#	Article	IF	CITATIONS
19	Computational Cardiac Modeling Reveals Mechanisms of Ventricular Arrhythmogenesis in Long QT Syndrome Type 8: CACNA1C R858H Mutation Linked to Ventricular Fibrillation. Frontiers in Physiology, 2017, 8, 771.	1.3	27
20	A Combined Random Forests and Active Contour Model Approach for Fully Automatic Segmentation of the Left Atrium in Volumetric MRI. BioMed Research International, 2017, 2017, 1-14.	0.9	5
21	Cardiac left ventricular volumes prediction method based on atlas location and deep learning. , 2016, ,		7
22	A graph-based method for fitting planar B-spline curves with intersections. Journal of Computational Design and Engineering, 2016, 3, 14-23.	1.5	24
23	Neuron anatomy structure reconstruction based on a sliding filter. BMC Bioinformatics, 2015, 16, 342.	1.2	12
24	A Temporal Area Variation Regularized Deep Learning Network for Left Ventricle Segmentation on Cardiac Magnetic Resonance. , 0, , .		1
25	A Novel Left Ventricular Volumes Prediction Method Based on Deep Learning Network in Cardiac MRI. , 0, , .		20
26	A Left Ventricular Segmentation Method on 3D Echocardiography Using Deep Learning and Snake. , 0, , .		14
27	A Deep Learning Network for Right Ventricle Segmentation in Short:Axis MRI., 0,,.		26
28	A Combined Multi:scale Deep Learning and Random Forests Approach for Direct Left Ventricular Volumes Estimation in 3D Echocardiography. , 0, , .		6
29	In Silico Investigation of Spontaneous Calcium Release on Premature Ventricular Contractions in Human Ventricles. , 0, , .		O