
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8934113/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Design of Vanadium Complex Catalysts for Precise Olefin Polymerization. Chemical Reviews, 2011, 111, 2342-2362.	23.0	265
2	Synthesis of Various Nonbridged Titanium(IV) Cyclopentadienylâ^'Aryloxy Complexes of the Type CpTi(OAr)X2and Their Use in the Catalysis of Alkene Polymerization. Important Roles of Substituents on both Aryloxy and Cyclopentadienyl Groups. Organometallics, 1998, 17, 2152-2154.	1.1	212
3	Nonbridged half-metallocenes containing anionic ancillary donor ligands: New promising candidates as catalysts for precise olefin polymerization. Journal of Molecular Catalysis A, 2007, 267, 1-29.	4.8	195
4	Olefin Polymerization by (Cyclopentadienyl)(aryloxy)titanium(IV) Complexesâ^'Cocatalyst Systems. Macromolecules, 1998, 31, 7588-7597.	2.2	193
5	Precise synthesis of polymers containing functional end groups by living ring-opening metathesis polymerization (ROMP): Efficient tools for synthesis of block/graft copolymers. Polymer, 2010, 51, 1861-1881.	1.8	144
6	Half-titanocenes containing anionic ancillary donor ligands as promising new catalysts for precise olefin polymerisation. Dalton Transactions, 2009, , 8811.	1.6	138
7	Remarkable Effects of Aluminum Cocatalyst and Comonomer in Ethylene Copolymerizations Catalyzed by (Arylimido)(aryloxo)vanadium Complexes:Â Efficient Synthesis of High Molecular Weight Ethylene/Norbornene Copolymer. Macromolecules, 2005, 38, 5905-5913.	2.2	127
8	Ethylene/Styrene Copolymerization by Various (Cyclopentadienyl)(aryloxy)titanium(IV) Complexesâ^'MAO Catalyst Systems. Macromolecules, 2002, 35, 5388-5395.	2.2	124
9	Olefin Polymerization and Ring-Opening Metathesis Polymerization of Norbornene by (Arylimido)(aryloxo)vanadium(V) Complexes of the Type VX2(NAr)(OArâ€~). Remarkable Effect of Aluminum Cocatalyst for the Coordination and Insertion and Ring-Opening Metathesis Polymerization. Macromolecules. 2002. 35. 1583-1590.	2.2	123
10	Preparation of "Sugar-Coated―Homopolymers and Multiblock ROMP Copolymers. Macromolecules, 1996, 29, 540-545.	2.2	119
11	Syndiospecific Styrene Polymerization and Efficient Ethylene/Styrene Copolymerization Catalyzed by (Cyclopentadienyl)(aryloxy)titanium(IV) Complexesâ^MAO System. Macromolecules, 2000, 33, 8122-8124.	2.2	118
12	Transition metal catalyzed hydrogenation or reduction in water. Journal of Molecular Catalysis A, 1998, 130, 1-28.	4.8	117
13	Synthesis of Poly(macromonomer)s by Repeating Ring-Opening Metathesis Polymerization (ROMP) with Mo(CHCMe2Ph)(NAr)(OR)2 Initiators. Macromolecules, 2001, 34, 4712-4723.	2.2	116
14	Copolymerization of Ethylene with Cyclohexene (CHE) Catalyzed byNonbridgedHalf-Titanocenes Containing Aryloxo Ligand:Â Notable Effect of Both Cyclopentadienyl and Anionic Donor Ligand for Efficient CHE Incorporation. Journal of the American Chemical Society, 2005, 127, 4582-4583.	6.6	115
15	Efficient Ethylene/Norbornene Copolymerization by (Aryloxo)(indenyl)titanium(IV) Complexesâ^'MAO Catalyst System. Macromolecules, 2003, 36, 3797-3799.	2.2	112
16	A Vanadium(V) Alkylidene Complex Exhibiting Remarkable Catalytic Activity for Ring-Opening Metathesis Polymerization (ROMP). Organometallics, 2005, 24, 2248-2250.	1.1	109
17	Notable Effect of Fluoro Substituents in the Imino Group in Ring-Opening Polymerization of ε-Caprolactone by Al Complexes Containing Phenoxyimine Ligands. Organometallics, 2009, 28, 2179-2187.	1.1	106
18	Olefin metathesis polymerization: Some recent developments in the precise polymerizations for synthesis of advanced materials (by ROMP, ADMET). Tetrahedron, 2018, 74, 619-643	1.0	106

#	Article	IF	CITATIONS
19	Half-titanocenes for precise olefin polymerisation: effects of ligand substituents and some mechanistic aspects. Dalton Transactions, 2011, 40, 7666.	1.6	104
20	Living Copolymerization of Ethylene with Styrene Catalyzed by (Cyclopentadienyl)(ketimide)titanium(IV) Complexâ^'MAO Catalyst System. Journal of the American Chemical Society, 2005, 127, 9364-9365.	6.6	98
21	Effect of the Cyclopentadienyl Fragment on Monomer Reactivities and Monomer Sequence Distributions in Ethylene/α-Olefin Copolymerization by a Nonbridged (Cyclopentadienyl)(aryloxy)titanium(IV) Complexâ^'MAO Catalyst System. Macromolecules, 2000, 33, 3187-3189.	2.2	96
22	Notable Effects of Aluminum Alkyls and Solvents for Highly Efficient Ethylene (Co)polymerizations Catalyzed by (Arylimido)- (aryloxo)vanadium Complexes. Advanced Synthesis and Catalysis, 2006, 348, 743-750.	2.1	95
23	Olefin polymerization by (cyclopentadienyl)(ketimide)titanium(IV) complexes of the type, Cp′TiCl2(NĩCtBu2)-methylaluminoxane (MAO) catalyst systems. Journal of Molecular Catalysis A, 2004, 220, 133-144.	4.8	93
24	Ethylene/α-olefin copolymerization by various nonbridged (cyclopentadienyl)(aryloxy)titanium(IV) complexes — MAO catalyst system. Journal of Molecular Catalysis A, 2001, 174, 127-140.	4.8	92
25	Ring-opening polymerization of various cyclic esters by Al complex catalysts containing a series of phenoxy-imine ligands: Effect of the imino substituents for the catalytic activity. Journal of Molecular Catalysis A, 2008, 292, 67-75.	4.8	88
26	Notable norbornene (NBE) incorporation in ethylene–NBE copolymerization catalysed by nonbridged half-titanocenes: better correlation between NBE incorporation and coordination energy. Chemical Communications, 2006, , 2659-2661.	2.2	83
27	n-Alkene and dihydrogen formation from n-alkanes by photocatalysis using carbonyl(chloro)phosphine–rhodium complexes. Journal of the Chemical Society Chemical Communications, 1988, .	2.0	80
28	Synthesis of Al complexes containing phenoxy-imine ligands and their use as the catalyst precursors for efficient living ring-opening polymerisation of Îμ-caprolactone. Dalton Transactions, 2008, , 3978.	1.6	78
29	Facile, Efficient Functionalization of Polyolefins via Controlled Incorporation of Terminal Olefins by Repeated 1,7-Octadiene Insertion. Journal of the American Chemical Society, 2007, 129, 14170-14171.	6.6	77
30	(Imido)vanadium(v)-alkyl, -alkylidene complexes exhibiting unique reactivity towards olefins and alcohols. Chemical Science, 2010, 1, 161.	3.7	77
31	Facile Synthesis of (Imido)vanadium(V)â^'Alkyl, Alkylidene Complexes Containing an N-Heterocyclic Carbene Ligand from Their Trialkyl Analogues. Organometallics, 2008, 27, 6400-6402.	1.1	73
32	Highly Efficient Dimerization of Ethylene by (Imido)vanadium Complexes Containing (2-Anilidomethyl)pyridine Ligands: Notable Ligand Effect toward Activity and Selectivity. Journal of the American Chemical Society, 2010, 132, 4960-4965.	6.6	73
33	Efficient Incorporation of 2-Methyl-1-pentene in Copolymerization of Ethylene with 2-Methyl-1-pentene Catalyzed by Nonbridged Half-Titanocenes. Macromolecules, 2005, 38, 2053-2055.	2.2	70
34	Synthesis and Structural Analysis of (Arylimido)vanadium(V) Complexes Containing Phenoxyimine Ligands: New, Efficient Catalyst Precursors for Ethylene Polymerization. Organometallics, 2008, 27, 2590-2596.	1.1	70
35	Synthesis and characterization of organoaluminum compounds containing quinolin-8-amine derivatives and their catalytic behaviour for ring-opening polymerization of ε-caprolactone. Dalton Transactions, 2009, , 9000.	1.6	69
36	Synthesis of high molecular weighttrans-poly(9,9-di-n-octylfluorene-2,7-vinylene) by the acyclic diene metathesis polymerization using molybdenum catalysts. Journal of Polymer Science Part A, 2001, 39, 2463-2470.	2.5	68

#	Article	IF	CITATIONS
37	(Arylimido)vanadium(V)–Alkylidene Complexes Containing Fluorinated Aryloxo and Alkoxo Ligands for Fast Living Ring-Opening Metathesis Polymerization (ROMP) and Highly Cis-Specific ROMP. Journal of the American Chemical Society, 2015, 137, 4662-4665.	6.6	68
38	Ring-Opening Metathesis Polymerization of Cyclic Olefins by (Arylimido)vanadium(V)-Alkylidenes: Highly Active, Thermally Robust <i>Cis</i> Specific Polymerization. Journal of the American Chemical Society, 2016, 138, 11840-11849.	6.6	67
39	Effect of Cyclopentadienyl Fragment in Copolymerization of Ethylene with Cyclic Olefins Catalyzed byNon-Bridged (Aryloxo)(cyclopentadienyl)titanium(IV) Complexes. Advanced Synthesis and Catalysis, 2005, 347, 433-446.	2.1	66
40	Synthesis and Structural Analysis of (Imido)vanadium(V) Dichloride Complexes Containing Imidazolin-2-iminato- and Imidazolidin-2-iminato Ligands, and their Use as Catalyst Precursors for Ethylene (Co)polymerization. Inorganic Chemistry, 2014, 53, 607-623.	1.9	66
41	Precise Synthesis of Poly(macromonomer)s Containing Sugars by Repetitive ROMP and Their Attachments to Poly(ethylene glycol): Synthesis, TEM Analysis and Their Properties as Amphiphilic Block Fragments. Chemistry - A European Journal, 2007, 13, 8985-8997.	1.7	65
42	Effect of Cyclopentadienyl and Amide Fragment in Olefin Polymerization by Nonbridged (Amide)(cyclopentadienyl)titanium(IV) Complexes of the Type Cpâ€~TiCl2[N(R)R]â^'Methylaluminoxane (MAO) Catalyst Systems. Macromolecules, 2003, 36, 2633-2641.	2.2	64
43	1,2-Câ^H Activation of Benzene Promoted by (Arylimido)vanadium(V)-Alkylidene Complexes: Isolation of the Alkylidene, Benzyne Complexes. Organometallics, 2011, 30, 2712-2720.	1.1	64
44	Syntheses of Various (Arylimido)vanadium(V)–Dialkyl Complexes Containing Aryloxo and Alkoxo Ligands, and Ring-Opening Metathesis Polymerization Using a Vanadium(V)–Alkylidene Complex. Organometallics, 2008, 27, 3818-3824.	1.1	63
45	Precise Synthesis of Amphiphilic Polymeric Architectures by Grafting Poly(ethylene glycol) to End-Functionalized Block ROMP Copolymers. Macromolecules, 2005, 38, 1075-1083.	2.2	62
46	Notable effect of imino substituent for the efficient ring-opening polymerization of ε-caprolactone initiated by Al complexes containing phenoxy-imine ligand of type, Me2Al(L) [L: O-2- Bu-6-(RN CH)C6H3; R: 2,6- Pr2C6H3, Bu, adamantyl, C6F5]. Catalysis Communications, 2008, 9, 1148-1152.	1.6	62
47	Synthesis of vanadium–alkylidene complexes and their use as catalysts for ring opening metathesis polymerization. Dalton Transactions, 2017, 46, 12-24.	1.6	62
48	Living Copolymerization of Ethylene with Styrene Catalyzed by (Cyclopentadienyl)(ketimide)titanium(IV) Complexâ^'MAO Catalyst System:Â Effect of Anionic Ancillary Donor Ligand. Macromolecules, 2006, 39, 5266-5274.	2.2	59
49	Synthesis of (1-Adamantylimido)vanadium(V) Complexes Containing Aryloxo, Ketimide Ligands: Effect of Ligand Substituents in Olefin Insertion/Metathesis Polymerization. Inorganic Chemistry, 2008, 47, 6482-6492.	1.9	59
50	Effect of Cyclopentadienyl and Anionic Ancillary Ligand in Syndiospecific Styrene Polymerization Catalyzed by Nonbridged Half-Titanocenes Containing Aryloxo, Amide, and Anilide Ligands:Â Cocatalyst Systems. Macromolecules, 2004, 37, 5520-5530.	2.2	57
51	Effect of Cyclopentadienyl and Anionic Donor Ligands on Monomer Reactivities in Copolymerization of Ethylene with 2-Methyl-1-pentene by Nonbridged Half-Titanocenesâ^`Cocatalyst Systems. Macromolecules, 2007, 40, 6489-6499.	2.2	57
52	Synthesis of (Imido)Vanadium(V) Dichloride Complexes Containing Anionic N-Heterocyclic Carbenes That Contain a Weakly Coordinating Borate Moiety: New MAO-Free Ethylene Polymerization Catalysts. Organometallics, 2016, 35, 1778-1784.	1.1	57
53	Efficient Incorporation of Vinylcylohexane in Ethylene/Vinylcyclohexane Copolymerization Catalyzed by Nonbridged Half-Titanocenes. Macromolecules, 2005, 38, 8121-8123.	2.2	55
54	Synthesis of Vanadium(III), -(IV), and -(V) Complexes That Contain the Pentafluorophenyl-Substituted Triamidoamine Ligand [(C6F5NCH2CH2)3N]3 Inorganic Chemistry, 1996, 35, 3695-3701.	1.9	54

#	Article	IF	CITATIONS
55	Ethylene Dimerization/Polymerization Catalyzed by (Adamantylimido)vanadium(V) Complexes Containing (2-Anilidomethyl)pyridine Ligands: Factors Affecting the Ethylene Reactivity. Organometallics, 2012, 31, 3575-3581.	1.1	53
56	Synthesis of All-Trans High Molecular Weight Poly(<i>N</i> -alkylcarbazole-2,7-vinylene)s and Poly(9,9-dialkylfluorene-2,7-vinylene)s by Acyclic Diene Metathesis (ADMET) Polymerization Using Rutheniumâ^Carbene Complex Catalysts. Macromolecules, 2009, 42, 5104-5111.	2.2	52
57	A Stable Vanadium(V)-Methyl Complex Containing Arylimido and Bis(ketimide) Ligands That Exhibits Unique Reactivity with Alcohol. Organometallics, 2005, 24, 3621-3623.	1.1	51
58	Olefin Polymerization by the (Pybox)RuX2(ethylene)â~'MAO Catalyst System. Macromolecules, 1999, 32, 4732-4734.	2.2	50
59	Synthesis of Nonbridged (Anilide)(cyclopentadienyl)titanium(IV) Complexes of the Type Cpâ€TiCl2[N(2,6-Me2C6H3)(R)] and Their Use in Catalysis for Olefin Polymerization. Organometallics, 2002, 21, 3042-3049.	1.1	49
60	Reactions of an (Arylimido)vanadium(V)â^'Alkylidene, V(CHSiMe ₃)(N-2,6-Me ₂ C ₆ H ₃)(Nâ•€ ^{<i>t</i>} Bu with Nitriles, Diphenylacetylene, and Styrene. Organometallics, 2008, 27, 5353-5360.	، _{2<!--</td--><td>sub#9)(PMe<s< td=""></s<></td>}	sub#9)(PMe <s< td=""></s<>
61	Polymerization of 1-hexene, 1-octene catalyzed by Cp′TiCl2(O-2,6-iPr2C6H3)–MAO system. Unexpected increase of the catalytic activity for ethylene/1-hexene copolymerization by (1,3-tBu2C5H3)TiCl2(O-2,6-iPr2C6H3)–MAO catalyst system. Journal of Molecular Catalysis A, 2000, 152, 249-252.	4.8	48
62	Ruthenium catalyzed hydrogenation of methyl phenylacetate under low hydrogen pressure. Journal of Molecular Catalysis A, 2002, 178, 105-114.	4.8	48
63	Synthesis of (Arylimido)vanadium(V) Complexes Containing (2-Anilidomethyl)pyridine Ligands and Their Use as the Catalyst Precursors for Olefin Polymerization. Organometallics, 2009, 28, 5925-5933.	1.1	48
64	Ethylene Homopolymerization and Ethylene/1-Butene Copolymerization Catalyzed by a [1,8-C10H6(NR)2]TiCl2â^'Cocatalyst System. Macromolecules, 1998, 31, 8009-8015.	2.2	47
65	Efficient selective reduction of aromatic nitro compounds by ruthenium catalysis under COH2O conditions. Journal of Molecular Catalysis A, 1995, 95, 203-210.	4.8	46
66	Ethylene Polymerization Catalyzed by Ruthenium and Iron Complexes Containing 2,6-Bis(2-oxazolin-2-yl)pyridine (Pybox) Ligand-Cocatalyst System. Bulletin of the Chemical Society of Japan, 2000, 73, 599-605.	2.0	45
67	Synthesis of Oligo(thiophene)-Coated Star-Shaped ROMP Polymers: Unique Emission Properties by the Precise Integration of Functionality. Journal of the American Chemical Society, 2012, 134, 7892-7895.	6.6	45
68	Highly Efficient Ethylene/Cyclopentene Copolymerization with Exclusive 1,2 yclopentene Incorporation by (Cyclopentadienyl)(ketimide)titanium(IV) Complex–MAO Catalysts. Advanced Synthesis and Catalysis, 2007, 349, 2235-2240.	2.1	44
69	Effect of aryloxo ligand for ethylene polymerization by (arylimido)(aryloxo)vanadium(V) complexes–MAO catalyst systems: attempt for polymerization of styrene. Catalysis Communications, 2003, 4, 159-164.	1.6	43
70	Polymerization of 1,5-Hexadiene by the Nonbridged Half-Titanocene Complexâ^'MAO Catalyst System: Remarkable Difference in the Selectivity of Repeated 1,2-Insertion. Macromolecules, 2004, 37, 1693-1695.	2.2	43
71	Acyclic diene metathesis polymerization of 2,5-dialkyl-1,4-divinylbenzene with molybdenum or ruthenium catalysts: Factors affecting the precise synthesis of defect-free, high-molecular-weighttrans-poly(p-phenylene vinylene)s. Journal of Polymer Science Part A, 2005, 43, 6166-6177.	2.5	43
72	Copolymerization of Ethylene with α-Olefins Containing Various Substituents Catalyzed by Half-Titanocenes: Factors Affecting the Monomer Reactivities. Macromolecules, 2009, 42, 4585-4595.	2.2	43

#	Article	IF	CITATIONS
73	Ring-Opening Polymerization of THF by Aryloxo-Modified (Imido)vanadium(V)-alkyl Complexes and Ring-Opening Metathesis Polymerization by Highly Active V(CHSiMe ₃)(NAd)(OC ₆ F ₅)(PMe ₃) ₂ . Organometallics, 2012, 31, 5114-5120.	1.1	43
74	Synthesis of Bio-Based Aliphatic Polyesters from Plant Oils by Efficient Molecular Catalysis: A Selected Survey from Recent Reports. ACS Sustainable Chemistry and Engineering, 2021, 9, 5486-5505.	3.2	43
75	Precise Synthesis of Amphiphilic Multiblock Copolymers by Combination of Acyclic Diene Metathesis (ADMET) Polymerization with Atom Transfer Radical Polymerization (ATRP) and Click Chemistry. ACS Macro Letters, 2012, 1, 423-427.	2.3	42
76	Chiral optofluidics: gigantic circularly polarized light enhancement of all-trans-poly(9,9-di-n-octylfluorene-2,7-vinylene) during mirror-symmetry-breaking aggregation by optically tuning fluidic media. RSC Advances, 2012, 2, 6663.	1.7	42
77	Copolymerizations of Norbornene and Tetracyclododecene with α-Olefins by Half-Titanocene Catalysts: Efficient Synthesis of Highly Transparent, Thermal Resistance Polymers. Macromolecules, 2016, 49, 59-70.	2.2	42
78	Ligand effect in olefin polymerization catalyzed by (cyclopentadienyl)(aryloxy) titanium(IV) complexes, Cp′TiCl2(OAr)–MAO system Journal of Molecular Catalysis A, 2000, 159, 127-137.	4.8	41
79	Ethylene Polymerization and Ring-Opening Metathesis Polymerization of Norbornene Catalyzed by (Arylimido)(aryloxy)vanadium(V) Complexes of the Type, V(Nar)(Oar′)X2(X = Cl, CH2Ph). Chemistry Letters, 2001, 30, 36-37.	0.7	41
80	Exclusive End Functionalization of all-trans-Poly(fluorene vinylene)s Prepared by Acyclic Diene Metathesis Polymerization: Facile Efficient Synthesis of Amphiphilic Triblock Copolymers by Grafting Poly(ethylene glycol). Macromolecules, 2008, 41, 4245-4249.	2.2	41
81	Synthesis of Half-Titanocenes Containing Phenoxy-imine Ligands and Their Use as Catalysts for Olefin Polymerization. Organometallics, 2007, 26, 5967-5977.	1.1	40
82	Efficient Functional Group Introduction into Polyolefins by Copolymerization of Ethylene with Allyltrialkylsilane Using Nonbridged Half-Titanocenes. Macromolecules, 2008, 41, 1070-1072.	2.2	40
83	Facile Controlled Synthesis of Soluble Star Shape Polymers by Ring-Opening Metathesis Polymerization (ROMP). Macromolecules, 2009, 42, 899-901.	2.2	40
84	Effects of cyclopentadienyl fragment in ethylene, 1-hexene, and styrene polymerizations catalyzed by half-titanocenes containing ketimide ligand of the type, Cp′TiCl2(NĩCtBu2). Catalysis Communications, 2004, 5, 413-417.	1.6	39
85	Design of Efficient Molecular Catalysts for Synthesis of Cyclic Olefin Copolymers (COC) by Copolymerization of Ethylene and α-Olefins with Norbornene or Tetracyclododecene. Catalysts, 2016, 6, 175.	1.6	39
86	Effect of aryloxide ligand in 1-hexene, styrene polymerization catalyzed by nonbridged half-titanocenes of the type, Cp′TiCl2(OAr) (Cp′=C5Me5, tBuC5H4). Journal of Molecular Catalysis A, 2006, 254, 197-205.	4.8	38
87	Direct synthesis of 2-phenylethanol by hydrogenation of methyl phenylacetate using homogeneous ruthenium-phosphine catalysis under low hydrogen pressure. Journal of Molecular Catalysis A, 2001, 166, 345-349.	4.8	37
88	Polymerization of 1,5-Hexadiene by Half-Titanocenesâ^'MAO Catalyst Systems:  Factors Affecting the Selectivity for the Favored Repeated 1,2-Insertion. Macromolecules, 2006, 39, 4009-4017.	2.2	37
89	Direct Precise Functional Group Introduction into Polyolefins: Efficient Incorporation of Vinyltrialkylsilanes in Ethylene Copolymerizations by Nonbridged Half-Titanocenes. Macromolecules, 2008, 41, 8974-8976.	2.2	37
90	Synthesis of binuclear phenoxyimino organoaluminum complexes and their use as the catalyst precursors for efficient ring-opening polymerisation of ε-caprolactone. Dalton Transactions, 2013, 42, 12346.	1.6	37

#	Article	IF	CITATIONS
91	Synthesis and Structural Analysis of (Imido)Vanadium(V) Complexes Containing Chelate (Anilido)Methyl-imine Ligands: Ligand Effect in Ethylene Dimerization. Inorganic Chemistry, 2013, 52, 2607-2614.	1.9	37
92	(Arylimido)Vanadium(V)-Alkylidenes Containing Chlorinated Phenoxy Ligands: Thermally Robust, Highly Active Catalyst in Ring-Opening Metathesis Polymerization of Cyclic Olefins. Organometallics, 2018, 37, 2064-2074.	1.1	37
93	Recent Developments in Zâ€Selective Olefin Metathesis Reactions by Molybdenum, Tungsten, Ruthenium, and Vanadium Catalysts. Advanced Synthesis and Catalysis, 2021, 363, 1970-1997.	2.1	37
94	Synthesis and Structure of Titanatranes Containing Tetradentate Trianionic Donor Ligands of the Type [(O-2,4-R2C6H2-6-CH2)2(OCH2CH2)]N3- and Their Use in Catalysis for Ethylene Polymerization. Organometallics, 2007, 26, 1616-1626.	1.1	36
95	Efficient ethylene/norbornene copolymerization by halfâ€titanocenes containing imidazolinâ€2â€iminato ligands and MAO catalyst systems. Journal of Polymer Science Part A, 2013, 51, 2575-2580.	2.5	36
96	Ethylene Polymerization Catalyzed by Titanium(IV) Complexes of a Triaryloxoamine Ligand[TiX{(OArCH2)3N}]. Macromolecular Rapid Communications, 2004, 25, 504-507.	2.0	35
97	Recent Progress in Precise Synthesis of Polyolefins Containing Polar Functionalities by Transition Metal Catalysis. Current Organic Synthesis, 2008, 5, 217-226.	0.7	35
98	Noticeable Chiral Center Dependence of Signs and Magnitudes in Circular Dichroism (CD) and Circularly Polarized Luminescence (CPL) Spectra of <i>all</i> - <i>trans</i> -Poly(9,9-dialkylfluorene-2,7-vinylene)s Bearing Chiral Alkyl Side Chains in Solution, Aggregates, and Thin Films. Macromolecules, 2018, 51, 2377-2387.	2.2	35
99	Synthesis of homopolymers and multiblock copolymers by the living ring-opening metathesis polymerization of norbornenes containing acetyl-protected carbohydrates with well-defined ruthenium and molybdenum initiators. Journal of Polymer Science Part A, 2004, 42, 4248-4265.	2.5	34
100	Tuning the active species from syndiospecific styrene polymerisation to ethylene/styrene copolymerisation by (aryloxo)(cyclopentadienyl)titanium complexes–MAO catalysts. Dalton Transactions, 2007, , 1802-1806.	1.6	34
101	Dithieno[3,4-b:3′,4′-d]thiophene-Annelated Antiaromatic Planar Cyclooctatetraene with Olefinic Protons. Organic Letters, 2013, 15, 3522-3525.	2.4	34
102	Ethylene polymerisation and ethylene/norbornene copolymerisation by using aryloxo-modified vanadium(<scp>v</scp>) complexes containing 2,6-difluoro-, dichloro-phenylimido complexes. Dalton Transactions, 2015, 44, 12273-12281.	1.6	34
103	Effect of Al Cocatalyst in Ethylene and Ethylene/Norbornene (Co)polymerization by (Imido)vanadium Dichloride Complexes Containing Anionic <i>N</i> -Heterocyclic Carbenes Having Weakly Coordinating Borate Moiety. Journal of the Japan Petroleum Institute, 2017, 60, 256-262.	0.4	34
104	Alkene and dihydrogen formation by catalytic dehydrogenation of alkane with RhCl(pr3)2 photogenerated from rhcl(co)(pr3)2. Journal of Molecular Catalysis, 1989, 54, 57-64.	1.2	33
105	Precise synthesis of poly(macromonomer)s containing sugars by repetitive ring-opening metathesis polymerisation. Chemical Communications, 2005, , 4080.	2.2	33
106	Effect of ketimide ligand for ethylene polymerization and ethylene/norbornene copolymerization catalyzed by (cyclopentadienyl)(ketimide)titanium complexes–MAO catalyst systems: Structural analysis for Cpâ^—TiCl2(NCPh2). Journal of Organometallic Chemistry, 2007, 692, 4675-4682.	0.8	33
107	Synthesis and Structural Analysis of (Cyclopentadienyl)(pyrrolide)titanium(IV) Complexes and Their Use in Catalysis for Olefin Polymerization. Organometallics, 2009, 28, 111-122.	1.1	33
108	Precise Synthesis of Poly(fluorene-2,7-vinylene)s Containing Oligo(thiophene)s at the Chain Ends: Unique Emission Properties by the End Functionalization. Macromolecules, 2011, 44, 3705-3711.	2.2	33

#	Article	IF	CITATIONS
109	Ethylene copolymerization by half-titanocenes containing imidazolin-2-iminato ligands–MAO catalyst systems. Journal of Molecular Catalysis A, 2012, 363-364, 501-511.	4.8	33
110	Synthesis of (Adamantylimido)vanadium(V) Dimethyl Complex Containing (2-Anilidomethyl)pyridine Ligand and Selected Reactions: Exploring the Oxidation State of the Catalytically Active Species in Ethylene Dimerization. Organometallics, 2017, 36, 530-542.	1.1	33
111	XAS Analysis of Reactions of (Arylimido)vanadium(V) Dichloride Complexes Containing Anionic NHC That Contains a Weakly Coordinating B(C ₆ F ₅) ₃ Moiety (WCA-NHC) or Phenoxide Ligands with Al Alkyls: A Potential Ethylene Polymerization Catalyst with WCA-NHC Ligands. ACS Omega. 2019. 4. 18833-18845.	1.6	33
112	Copolymerization of Ethylene with <i>tert</i> Butylethylene Using <i>Nonbridged</i> Half-Titanocene-Cocatalyst Systems. Macromolecules, 2009, 42, 3767-3773.	2.2	32
113	Synthesis of (Imido)vanadium(V) Alkyl and Alkylidene Complexes Containing Imidazolidin-2-iminato Ligands: Effect of Imido Ligand on ROMP and 1,2-C–H Bond Activation of Benzene. Organometallics, 2014, 33, 6682-6691.	1.1	32
114	Synthesis of Half-Titanocenes Containing Anionic N-Heterocyclic Carbenes That Contain a Weakly Coordinating Borate Moiety, Cp′TiX2(WCA-NHC), and Their Use as Catalysts for Ethylene (Co)polymerization. Organometallics, 2019, 38, 3233-3244.	1.1	32
115	Synthesis of new polyesters by acyclic diene metathesis polymerization of bio-based α,ï‰-dienes prepared from eugenol and castor oil (undecenoate). RSC Advances, 2019, 9, 10245-10252.	1.7	32
116	Effect of ligand in ethylene/styrene copolymerization by [Me2Si(C5Me4)(NR)]TiCl2 (R = tert-Bu,) Tj ETQqO O O r Catalysis A, 2002, 190, 225-234.	rgBT /Overl 4.8	ock 10 Tf 50 4 31
117	Efficient living polymerization of 1-hexene by Cp*TiMe2(O-2,6-iPr2C6H3)-borate catalyst systems at low temperature. Journal of Molecular Catalysis A, 2004, 209, 9-17.	4.8	31
118	<i>Cis</i> -Specific Chain Transfer Ring-Opening Metathesis Polymerization Using a Vanadium(V) Alkylidene Catalyst for Efficient Synthesis of End-Functionalized Polymers. Organometallics, 2017, 36, 4103-4106.	1.1	31
119	A study concerning the effect of organoboron compounds in 1-hexene polymerization catalyzed by Cp*TiMe2(O-2,6-iPr2C6H3). Structural analysis for Cp*TiMe2(O-2,6-iPr2C6H3) and Cp*TiMe(CF3SO3)(O-2,6-iPr2C6H3). Inorganica Chimica Acta, 2003, 345, 37-43.	1.2	30
120	Precise Synthesis of Poly(fluorene vinylene)s Capped with Chromophores: Efficient Fluorescent Polymers Modified by Conjugation Length and End-Groups. ACS Macro Letters, 2013, 2, 980-984.	2.3	30
121	Effect of ligand substituents in olefin polymerisation by half-sandwich titanium complexes containing monoanionic iminoimidazolidide ligands–MAO catalyst systems. Dalton Transactions, 2011, 40, 7842.	1.6	29
122	Precise One-Pot Synthesis of End-Functionalized Conjugated Multi-Block Copolymers via Combined Olefin Metathesis and Wittig-type Coupling. Macromolecules, 2013, 46, 9563-9574.	2.2	29
123	Synthesis of (Adamantylmido)vanadium(V)-Alkyl, Alkylidene Complex Trapped with PMe ₃ : Reactions of the Alkylidene Complexes with Phenols. Organometallics, 2014, 33, 6585-6592.	1.1	29
124	Synthesis of (Imido)vanadium(V) Complexes Containing 8-(2,6-Dimethylanilide)-5,6,7-trihydroquinoline Ligands: Highly Active Catalyst Precursors for Ethylene Dimerization. Organometallics, 2014, 33, 1053-1060.	1.1	28
125	Synthesis of (Imido)niobium(V)–Alkylidene Complexes That Exhibit High Catalytic Activities for Metathesis Polymerization of Cyclic Olefins and Internal Alkynes. Organometallics, 2016, 35, 2773-2777.	1.1	28
126	Synthesis of Various (Arylimido)vanadium(V)â^'Methyl Complexes Containing Ketimide Ligands and Reactions with Alcohols, Thiols, and Borates:Â Implications for Unique Reactivity toward Alcohols. Organometallics, 2007, 26, 2579-2588.	1.1	27

#	Article	IF	CITATIONS
127	Efficient ring-opening metathesis polymerization of norbornene by vanadium-alkylidenes generated in situ from V(NAr)Cl2(L) (L: ketimide, aryloxo). Journal of Molecular Catalysis A, 2007, 275, 1-8.	4.8	27
128	Hetero-bimetallic Complexes of Titanatranes with Aluminum Alkyls: Synthesis, Structural Analysis, and Their Use in Catalysis for Ethylene Polymerization. Organometallics, 2010, 29, 3500-3506.	1.1	27
129	Efficient Selective Reduction of Aromatic Nitro Compounds Affording Aromatic Amines under CO/H2O Conditions Catalyzed by Amine-Added Rhodium–Carbonyl Complexes. Bulletin of the Chemical Society of Japan, 1991, 64, 2624-2628.	2.0	26
130	Effect of Terminal Aryloxo Ligands in Ethylene Polymerization Using Titanatranes of the Type, [Ti(OAr){(O-2,4-R2C6H2)-6-CH2}3N]: Synthesis and Structural Analysis of the Heterobimetallic Complexes of Titanatranes with AlMe3. Organometallics, 2012, 31, 8237-8248.	1.1	26
131	Synthesis and Structural Analysis of (Imido)vanadium Dichloride Complexes Containing 2-(2′-Benz-imidazolyl)pyridine Ligands: Effect of Al Cocatalyst for Efficient Ethylene (Co)polymerization. ACS Omega, 2017, 2, 8660-8673.	1.6	26
132	A practical convenient homogeneous palladium-phosphine catalysis for hydrocarbonylation of chlorobenzenes. Journal of Molecular Catalysis A, 1997, 120, L9-L11.	4.8	25
133	Factors affecting product distributions in ethylene/styrene copolymerization by (aryloxo)(cyclopentadienyl)titanium complexesâ€MAO catalyst systems. Journal of Polymer Science Part A, 2008, 46, 4162-4174.	2.5	25
134	Efficient Synthesis of Functionalized Polyolefin by Incorporation of 4-Vinylcyclohexene in Ethylene Copolymerization Using Half-Titanocene Catalysts. Macromolecules, 2009, 42, 5097-5103.	2.2	25
135	Olefin Polymerization by Half-Titanocenes Containing η ² -Pyrazolato Ligandsâ^'MAO Catalyst Systems. Macromolecules, 2011, 44, 1986-1998.	2.2	24
136	Synthesis of Poly(arylene vinylene)s with Different End Groups by Combining Acyclic Diene Metathesis Polymerization with Wittigâ€ŧype Couplings. Angewandte Chemie - International Edition, 2017, 56, 5288-5293.	7.2	24
137	Olefin polymerization and copolymerization with soluble transition-metal complex catalysts. Journal of Polymer Science Part A, 2000, 38, 4613-4626.	2.5	23
138	Copolymerization of ethylene with α-olefin catalyzed by [1,8-C10H6(NSitBuMe2)2]TiCl2 and [ArN(CH2)3NAr]TiCl2 (Ar=2,6-iPr2C6H3)–MMAO catalyst systems. Polymer, 2000, 41, 2755-2764.	1.8	23
139	Synthesis of Isoxazolino Norbornene Derivatives Containing Sugar Residues by 1,3-Dipolar Cycloaddition and Their Application to the Synthesis of Neoglycopolymers by Living Ring-Opening Metathesis Polymerization. Macromolecules, 2006, 39, 3147-3153.	2.2	23
140	Acyclic Diene Metathesis (ADMET) Polymerization for Precise Synthesis of Defect-Free Conjugated Polymers with Well-Defined Chain Ends. Catalysts, 2015, 5, 500-517.	1.6	23
141	Solution X-Ray Absorption Spectroscopy (XAS) for Analysis of Catalytically Active Species in Reactions with Ethylene by Homogeneous (Imido)vanadium(V) Complexes—Al Cocatalyst Systems. Catalysts, 2019, 9, 1016.	1.6	23
142	Photocatalytic dehydrogenation of methanol using [IrH(SnCl3)5]3â^' complex. Journal of Molecular Catalysis, 1994, 89, 143-149.	1.2	22
143	NONBRIDGED HALF-TITANOCENES CONTAINING ANIONIC ANCILLARY DONOR LIGANDS: PROMISING NEW CATALYSTS FOR PRECISE SYNTHESIS OF CYCLIC OLEFIN COPOLYMERS (COCs). Chinese Journal of Polymer Science (English Edition), 2008, 26, 513.	2.0	22
144	Synthesis of (1-Adamantylimido)vanadium(V)-alkyl Complexes Containing a Chelate Alkoxo(imino)pyridine Ligand, and Reactions with Alcohols (ROH) That Proceed via Intermediates Formed by Coordination of ROH. Organometallics, 2009, 28, 1558-1568.	1.1	22

#	Article	IF	CITATIONS
145	Synthesis and Structural Analysis of Titanatranes Bearing Terminal Substituted Aryloxo Ligands of the type [Ti(OAr){(O-2,4-Me2C6H2-6-CH2)2(OCH2CH2)N}]n (n = 1, 2): Effect of Aryloxo Substituents in the Ethylene Polymerization. Inorganic Chemistry, 2009, 48, 9491-9500.	1.9	22
146	Synthesis and Reaction Chemistry of Alkylidene Complexes With Titanium, Zirconium, Vanadium, and Niobium: Effective Catalysts for Olefin Metathesis Polymerization and Other Organic Transformations. Advances in Organometallic Chemistry, 2017, 68, 93-136.	0.5	22
147	Use of Pyridine-Coated Star-Shaped ROMP Polymer As the Supporting Ligand for Ruthenium-Catalyzed Chemoselective Hydrogen Transfer Reduction of Ketones. Organometallics, 2012, 31, 5074-5080.	1.1	21
148	Precise Synthesis of End-Functionalized Oligo(2,5-dialkoxy-1,4-phenylene vinylene)s with Controlled Repeat Units via Combined Olefin Metathesis and Wittig-Type Coupling. Organic Letters, 2013, 15, 1618-1621.	2.4	21
149	Precise one-pot synthesis of fully conjugated end-functionalized star polymers containing poly(fluorene-2,7-vinylene) (PFV) arms. Polymer Chemistry, 2015, 6, 380-388.	1.9	21
150	Catalytic One-Pot Synthesis of End-Functionalized Poly(9,9′-di- <i>n</i> -octylfluorenevinylene)s by Acyclic Diene Metathesis (ADMET) Polymerization Using Ruthenium–Carbene Catalysts. Macromolecules, 2016, 49, 518-526.	2.2	21
151	Effects of End-Groups on Photophysical Properties of Poly(9,9-di- <i>n</i> -octylfluorene-2,7-vinylene)s Linked with Metalloporphyrins: Synthesis and Time-Resolved Fluorescence Spectroscopy. Macromolecules, 2017, 50, 1803-1814.	2.2	21
152	Novel selective catalytic reduction of aromatic nitro compounds affording amines using rutheniumî—,carbonyl complex in the presence of NEt3 under CO/H2O conditions. Journal of Molecular Catalysis, 1992, 73, L1-L4.	1.2	20
153	Selective reduction of aromatic nitro compounds affording aromatic amines under CO/H2O conditions catalyzed by phosphine-added rhodium and ruthenium carbonyl complexes. Journal of Molecular Catalysis, 1993, 78, 273-282.	1.2	20
154	Synthesis of titanium(IV) complexes that contain the Bis(silylamide) ligand of the type [1,8-C10H6(NR)2]2â^', and alkene polymerization catalyzed by [1,8-C10H6(NR)2]TiCl2-cocatalyst system. Journal of Molecular Catalysis A, 1998, 130, L209-L213.	4.8	20
155	Tris(pyrazolyl)borate Ti(IV) Complexes Containing Phenoxy Ligands: Effective Catalyst Precursors for Ethylene Polymerization That Proceeds via Cationic Ti(IV) Species. Organometallics, 2009, 28, 1942-1949.	1.1	20
156	Syndiospecific Styrene Polymerization and Ethylene/Styrene Copolymerization Using Half-Titanocenes: Ligand Effects and Some New Mechanistic Aspects. Catalysis Surveys From Asia, 2010, 14, 33-49.	1.0	20
157	Synthesis of Biobased Long-Chain Polyesters by Acyclic Diene Metathesis Polymerization and Tandem Hydrogenation and Depolymerization with Ethylene. ACS Omega, 2020, 5, 18301-18312.	1.6	20
158	Extremely efficient catalytic reduction of aromatic nitro compounds affording amines using amine-added Rh6(CO)16 catalyst systems under CO/H2O conditions. Journal of Molecular Catalysis, 1991, 66, L11-L13.	1.2	19
159	Syndiospecific styrene polymerization by (tert-BuC5H4)TiCl2(O-2,6- Pr2C6H3) – borate catalyst system. Catalysis Communications, 2003, 4, 269-274.	1.6	19
160	(Imido)vanadium Complexes as Efficient Catalyst Precursors for Olefin Polymerization/Oligomerization. Catalysis Surveys From Asia, 2011, 15, 127-133.	1.0	19
161	Ethylene Copolymerization with 4-Methylcyclohexene or 1-Methylcyclopentene by Half-Titanocene Catalysts: Effect of Ligands and Microstructural Analysis of the Copolymers. Macromolecules, 2018, 51, 853-863.	2.2	19
162	Solution XANES and EXAFS analysis of active species of titanium, vanadium complex catalysts in ethylene polymerisation/dimerisation and syndiospecific styrene polymerisation. Dalton Transactions, 2020, 49, 8008-8028.	1.6	19

#	Article	IF	CITATIONS
163	Selective Catalytic Reduction of Aromatic Nitro Compounds Affording Amines under CO/H2O Conditions Using Amine-added Ruthenium–Carbonyl Complexes. Chemistry Letters, 1991, 20, 1679-1682.	0.7	18
164	Selective hydrogen transfer reduction of ketones by recyclable ruthenium complex catalysts containing a †ROMP polymer-attached' ligand. Journal of Molecular Catalysis A, 2006, 245, 152-160.	4.8	18
165	Unique Reactivity of (Arylimido)vanadium(V)–Alkyl Complexes with Phenols: Fast Phenoxy Ligand Exchange in the Presence of Vanadium(V)–Alkyls. Organometallics, 2011, 30, 3610-3618.	1.1	18
166	The Effect of SiMe ₃ and SiEt ₃ <i>Para</i> Substituents for High Activity and Introduction of a Hydroxy Group in Ethylene Copolymerization Catalyzed by Phenoxideâ€Modified Halfâ€ītanocenes. Angewandte Chemie - International Edition, 2020, 59, 23072-23076.	7.2	18
167	Photocatalytic dehydrogenation of 2-propanol with carbonyl(halogeno)phosphine-rhodium complexes. Journal of Molecular Catalysis, 1989, 52, 99-111.	1.2	17
168	Novel reduction of aromatic nitro compounds affording amines using CO and water catalysed by phosphine-added Rh(CO)2(acac) complexes. Journal of Molecular Catalysis, 1991, 66, L19-L21.	1.2	17
169	Facile selective reduction of aromatic nitro compounds affording amines using Rh4(CO)12-9,10-diaminophenanthrene catalyst system under CO/H2O conditions: The effect of 9,10-diaminophenanthrene. Journal of Molecular Catalysis, 1991, 66, L1-L3.	1.2	17
170	Synthesis of Half-Titanocenes Containing Aryloxide Ligands Attached to the ROMP Polymer Chain End:Â Unique Catalyst Precursors for Ethylene (Co)polymerization. Organometallics, 2007, 26, 3461-3465.	1.1	17
171	Vanadyl Di(5â€ <i>t</i> â€butylâ€2â€(aryliminomethyl)quinolinâ€8â€olate): Synthesis, Characterization, and Ethylene (Coâ€)Polymerization. Macromolecular Chemistry and Physics, 2014, 215, 1744-1752.	1.1	17
172	Time-Resolved Fluorescence Spectra in the End-Functionalized Conjugated Triblock Copolymers Consisting of Poly(fluorene vinylene) and Oligo(phenylene vinylene): Proposal of Dynamical Distortion in the Excited State. Macromolecules, 2015, 48, 6233-6240.	2.2	17
173	Efficient Norbornene (NBE) Incorporation in Ethylene/NBE Copolymerization by Half-Titanocene Catalysts Containing Chlorinated Aryloxo Ligands. Organometallics, 2016, 35, 1895-1905.	1.1	17
174	Selective catalytic reduction of aromatic nitro compounds using CO and water with highly active rhodium-phosphine chelate complexes. Journal of Molecular Catalysis, 1991, 65, L5-L7.	1.2	16
175	Ethylene polymerization and ethylene/1-octene copolymerization using group 4 half-metallocenes containing aryloxo ligands, CpMCl2(OAr) [M=Ti, Zr, Hf; Ar=O-2,6-R2C6H3, R=tBu, Ph]—MAO catalyst systems. Journal of Molecular Catalysis A, 2009, 303, 102-109.	4.8	16
176	A Facile, Controlled Synthesis of Soluble Star Polymers Containing a Sugar Residue by Ringâ€Opening Metathesis Polymerization (ROMP). Macromolecular Symposia, 2010, 293, 53-57.	0.4	16
177	New Approaches in Precise Synthesis of Polyolefins Containing Polar Functionalities by Olefin Copolymerizations Using Transition Metal Catalysts. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2010, 68, 1150-1158.	0.0	16
178	Ring opening metathesis polymerization of norbornene and tetracyclododecene with cyclooctene by using (arylimido)vanadium(V)–alkylidene catalyst. Journal of Polymer Science Part A, 2017, 55, 3067-3074.	2.5	16
179	Solution XAS Analysis for Exploring Active Species in Syndiospecific Styrene Polymerization and 1-Hexene Polymerization Using Half-Titanocene–MAO Catalysts: Significant Changes in the Oxidation State in the Presence of Styrene. Organometallics, 2019, 38, 4497-4507.	1.1	16
180	Dialkylaluminum 2-substituted 6,6-dimethylcyclopentylpyridin-7-oxylates toward structural-differentiation of the ring-opening polymerization of Îμ-caprolactone and <scp>l</scp> -lactides. Dalton Transactions, 2019, 48, 4157-4167.	1.6	16

#	Article	IF	CITATIONS
181	Time-dependent DFT study of the K-edge spectra of vanadium and titanium complexes: effects of chloride ligands on pre-edge features. Physical Chemistry Chemical Physics, 2020, 22, 674-682.	1.3	16
182	Vanadium(V) Arylimido Alkylidene N-Heterocyclic Carbene Alkyl and Perhalophenoxy Alkylidenes for the Cis, Syndiospecific Ring Opening Metathesis Polymerization of Norbornene. Organometallics, 2021, 40, 2017-2022.	1.1	16
183	Effect of cocatalyst in 1-hexene polymerization by Cpâ^—TiMe2(O-2,6-iPr2C6H3) complex. Journal of Molecular Catalysis A, 2000, 164, 131-135.	4.8	15
184	Hydrogenation of PhCH2CHO catalyzed by ruthenium complex containing "polymer-attached―ligand prepared by living ring-opening metathesis polymerization. Journal of Molecular Catalysis A, 2002, 185, 311-316.	4.8	15
185	Effect of Anionic Ancillary Ligand in Ethylene Polymerization Catalyzed by (Arylimido)vanadium Complexes Containing Aryloxide, Ketimide Ligand. Studies in Surface Science and Catalysis, 2006, , 123-128.	1.5	15
186	Synthesis of (adamantylimido)vanadium(V)-alkyl complexes containing aryloxo ligands and their use as the catalyst precursors for ring-opening metathesis polymerization of norbornene, and ring-opening polymerization of tetrahydrofuran. Journal of Organometallic Chemistry, 2011, 696, 4057-4063.	0.8	15
187	Synthesis and structural analysis of phenoxy-substituted half-titanocenes with different anionic ligands, Cp*TiX(Y)(O-2,6-iPr2C6H3): Effect of anionic ligands (X,Y) in ethylene/styrene copolymerization. Journal of Molecular Catalysis A, 2012, 365, 136-145.	4.8	15
188	Facile <i>in situ</i> generation of highly active (arylimido)vanadium(<scp>v</scp>)–alkylidene catalysts for the ring-opening metathesis polymerization (ROMP) of cyclic olefins by immediate phenoxy ligand exchange. Chemical Communications, 2018, 54, 13559-13562.	2.2	15
189	Transition Metal Ketene Complexes as Active Intermediate for Catalytic Carbonylation of Geminal Dibromoalkanes. Chemistry Letters, 1986, 15, 1607-1610.	0.7	14
190	Photoenhanced catalytic dehydrogenation of methanol with tin(II)-coordinated iridium complexes. Journal of Molecular Catalysis, 1989, 50, 303-313.	1.2	14
191	Living Ring-Opening Metathesis Polymerization of Norbornenes Containing Acetyl-Protected Carbohydrates Using Well-Defined Molybdenum and Ruthenium Initiators. Macromolecular Rapid Communications, 2004, 25, 571-576.	2.0	14
192	Synthesis, structural analysis of the hetero-bimetallic complexes MMe[(O-2,4-tBu2C6H2-6-CH2)2(μ2-O-2,4-tBu2C6H2-6-CH2)N][Me2Al(μ2-OiPr)] [M = Zr, Hf] and their use in catalysis for ethylene polymerisation. Dalton Transactions, 2013, 42, 11632.	1.6	14
193	Half-Titanocenes Containing Anionic Ancillary Donor Ligands: Effective Catalyst Precursors for Ethylene/Styrene Copolymerization. Catalysts, 2013, 3, 157-175.	1.6	14
194	Synthesis of half-titanocenes containing 1,3-imidazolidin-2-iminato ligands of type, Cp*TiCl ₂ [1,3-R ₂ (CH ₂ N) ₂ Cî€N]: highly active catalyst precursors in ethylene (co)polymerisation. RSC Advances, 2015, 5, 64503-64513.	1.7	14
195	Synthesis of Titanium Complexes Containing an Amine Triphenolate Ligand of the Type [TiX{(O-2,4-R ₂ C ₆ H ₂)-6-CH ₂ } ₃ N] and the Ti–Al Heterobimetallic Complexes with AlMe ₃ : Effect of a Terminal Donor Ligand in Ethylene Polymerization, Organometallics, 2015, 34, 3272-3281.	1.1	14
196	Solution XAS Analysis for Exploring the Active Species in Homogeneous Vanadium Complex Catalysis. Journal of the Physical Society of Japan, 2018, 87, 061014.	0.7	14
197	Synthesis and Structural Analysis of Half-Titanocenes Containing η ² -Pyrazolato Ligands, and Their Use in Catalysis for Ethylene Polymerization. Inorganic Chemistry, 2009, 48, 5011-5020.	1.9	13
198	Efficient Terpolymerization of Ethylene and Styrene with 1,7â€Octadiene by Aryloxo Modified Halfâ€ītanocenes–Cocatalyst Systems: Efficient Introduction of the Reactive Functionality. Macromolecular Chemistry and Physics, 2014, 215, 1785-1791.	1.1	13

#	Article	IF	CITATIONS
199	Efficient Conversion of Renewable Unsaturated Fatty Acid Methyl Esters by Cross-Metathesis with Eugenol. ACS Omega, 2018, 3, 11041-11049.	1.6	13
200	La(<scp>iii</scp>)-Catalysed degradation of polyesters to monomers <i>via</i> transesterifications. Chemical Communications, 2022, 58, 8141-8144.	2.2	13
201	Co2(CH2=C=O)(CO)7as an Active Intermediate for Cobalt-catalyzed Alkoxycarbonylation of CH2Br2. Chemistry Letters, 1989, 18, 1983-1986.	0.7	12
202	Donor–Acceptor Segregated Paracyclophanes Composed of Naphthobipyrrole and Stacked Fluoroarenes. Organic Letters, 2013, 15, 3202-3205.	2.4	12
203	Synthesis of Wellâ€Defined Oligo(2,5â€dialkoxyâ€1,4â€phenylene vinylene)s by Combined Olefin Metathesis and Wittigâ€type Coupling: Effect of Conjugation Repeat Units and End Groups Toward Optical Properties. Macromolecular Chemistry and Physics, 2014, 215, 1973-1983.	1.1	12
204	Synthesis and structural analysis of half-titanocenes containing 1,3-imidazolidin-2-iminato ligands: Effect of ligand substituents inÂethylene (co)polymerization. Journal of Organometallic Chemistry, 2015, 798, 375-383.	0.8	12
205	Synthesis of Mono-, Di-, and Trinuclear Rhodium Diphosphine Complexes Containing Light-Harvesting Fluorene Backbones. Inorganic Chemistry, 2017, 56, 1027-1030.	1.9	12
206	(Arylimido)niobium(V)–Alkylidenes, Nb(CHSiMe ₃)(NAr)[OC(CF ₃) ₃](PMe ₃) ₂ , That Enable to Proceed Living Metathesis Polymerization of Internal Alkynes. Macromolecules, 2020, 53, 5266-5279.	2.2	12
207	<i>cis</i> -Specific ring opening metathesis polymerisation (ROMP) of cyclic olefins using (pentafluorophenylimido)vanadium(<scp>v</scp>)-alkylidene, V(CHSiMe ₃)(NC ₆ F ₅)[OC(CF ₃) ₃](PMe _{3<!--<br-->Catalysis Science and Technology, 2020, 10, 5840-5846.}	sub>) <sul< td=""><td>⊃>2.</td></sul<>	⊃>2.
208	Ethylene Copolymerization with Limonene and β-Pinene: New Bio-Based Polyolefins Prepared by Coordination Polymerization. Macromolecules, 2021, 54, 4693-4703.	2.2	12
209	Ethylene Polymerization by Phenoxy Substituted Tris(pyrazolyl)borate Ti(IV) Methyl Complexes. Macromolecules, 2011, 44, 773-777.	2.2	11
210	Effect of Cocatalyst in Ethylene/Styrene Copolymerization by Aryloxoâ€Modified Halfâ€ītanocene–Cocatalyst Systems for Exclusive Synthesis of Copolymers at High Styrene Concentrations. Macromolecular Reaction Engineering, 2012, 6, 351-356.	0.9	11
211	Synthesis of ultrahigh molecular weight polymers by homopolymerisation of higher α-olefins catalysed by aryloxo-modified half-titanocenes. RSC Advances, 2016, 6, 16203-16207.	1.7	11
212	Synthesis of Ultrahigh Molecular Weight Polymers with Low PDIs by Polymerizations of 1-Decene, 1-Dodecene, and 1-Tetradecene by Cp*TiMe2(O-2,6-iPr2C6H3)–Borate Catalyst. Molecules, 2019, 24, 1634.	1.7	11
213	On-demand hydrogen production from formic acid by light-active dinuclear iridium catalysts. Chemical Communications, 2020, 56, 4519-4522.	2.2	11
214	Efficient synthesis of 2,3-dimethylbutenes by dimerization of propylene using nickel-phosphine catalyst in the presence of strong sulfonic acids and/or dialkyl sulfates. Remarkable effect of strong sulfonic acids and/or dialkyl sulfates. Journal of Molecular Catalysis A, 1997, 126, L93-L97.	4.8	10
215	Title is missing!. Catalysis Surveys From Asia, 1998, 2, 59-69.	1.2	10
216	Synthesis of Titanatranes Containing Bis(aryloxo)-(alkoxo)amines and their Use in Catalysis for Ethylene Polymerization. Macromolecular Symposia, 2007, 260, 133-139.	0.4	10

#	Article	IF	CITATIONS
217	Effect of aryloxo substituents in ethylene polymerisation by tris(pyrazolyl)borate titanium(IV) complexes containing aryloxo ligands of type, TpTiCl2(OAr). Dalton Transactions, 2009, , 9052.	1.6	10
218	Synthesis and structural analysis of aryloxo-modified trinuclear half-titanocenes, and their use as catalyst precursors for ethylene polymerisation. RSC Advances, 2017, 7, 41345-41358.	1.7	10
219	Solution XAS Analysis of Various (Imido)vanadium(V) Dichloride Complexes Containing Monodentate Anionic Ancillary Donor Ligands: Effect of Aluminium Cocatalyst in Ethylene/Norbornene (Co)polymerization. Journal of the Japan Petroleum Institute, 2018, 61, 282-287.	0.4	10
220	(Arylimido)niobium(V) Complexes Containing 2-Pyridylmethylanilido Ligand as Catalyst Precursors for Ethylene Dimerization That Proceeds via Cationic Nb(V) Species. Organometallics, 2019, 38, 1544-1559.	1.1	10
221	The synthesis of cyclic olefin copolymers (COCs) by ethylene copolymerisations with cyclooctene, cycloheptene, and with tricyclo[6.2.1.0(2,7)]undeca-4-ene: the effects of cyclic monomer structures on thermal properties. Polymer Chemistry, 2020, 11, 5590-5600.	1.9	10
222	Synthesis of Semicrystalline Long Chain Aliphatic Polyesters by ADMET Copolymerization of Dianhydro-D-glucityl bis(undec-10-enoate) with 1,9-Decadiene and Tandem Hydrogenation. Catalysts, 2021, 11, 1098.	1.6	10
223	Cobalt-catalyzed aminocarbonylation of geminal dihaloalkanes. Formation of 2-aminoamide and malonamide derivatives. Tetrahedron Letters, 1991, 32, 781-784.	0.7	9
224	One-pot Synthesis of End-functionalized Conjugated Polymers by Combined Acyclic Diene Metathesis (ADMET) Polymerization Using Molybdenum Catalyst with Wittig-type Coupling. Journal of the Japan Petroleum Institute, 2016, 59, 197-203.	0.4	9
225	Efficient synthesis of cyclic olefin copolymers with high glass transition temperatures by ethylene copolymerization with tetracyclododecene using (<i>tert</i> â€BuC ₅ H ₄)TiCl ₂ (N=C ^{<i>t</i>} Bu ₂)ź catalyst. lournal of Polymer Science Part A. 2016. 54. 2662-2667.	i€ ² MAO	9
226	Cu–Pd Dinuclear Complexes with Earth-Abundant Cu Photosensitizer: Synthesis and Photopolymerization. Organometallics, 2020, 39, 2464-2469.	1.1	9
227	Analysis of Ethylene Copolymers with Long-Chain α-Olefins (1-Dodecene, 1-Tetradecene, 1-Hexadecene): A Transition between Main Chain Crystallization and Side Chain Crystallization. ACS Omega, 2022, 7, 6900-6910.	1.6	9
228	Some reactions of Cp*TiMe2(OAr) and Cp*TiMe(CF3SO3)(OAr) with 5-hexen-1-ol and 3-buten-1-ol, structural analysis for Cp*Ti(CF3SO3)[OCH2(CH2)3CHĩ`CH2](OAr). Inorganic Chemistry Communication, 2003, 6, 517-522.	1.8	8
229	1-Hexene polymerization by CpTiX2(O-2,6-iPr2C6H3) [X: Cl, Me] in the presence of MAO- and MMAO-modified carbonaceous supports. Journal of Molecular Catalysis A, 2010, 319, 85-91.	4.8	8
230	Mono- and bis-amidinate 2,6-xylylimido vanadium chlorides: synthesis, structure, and reactivity. Dalton Transactions, 2010, 39, 5643.	1.6	8
231	Efficient terpolymerization of ethylene and styrene with αâ€olefins by aryloxoâ€modified halfâ€titanoceneâ€based catalysts and cocatalyst systems. Journal of Polymer Science Part A, 2013, 51, 2565-2574.	2.5	8
232	Synthesis of Wellâ€Defined Oligo(2,5â€dialkoxyâ€1,4â€phenylene vinylene)s with Chiral End Groups: Unique Helical Aggregations Induced by the Chiral Chain Ends. Chemistry - A European Journal, 2015, 21, 16764-16768.	1.7	8
233	Cross metathesis of methyl oleate (MO) with terminal, internal olefins by ruthenium catalysts: factors affecting the efficient MO conversion and the selectivity. RSC Advances, 2016, 6, 100925-100930.	1.7	8
234	Synthesis and Structural Analysis of Zr–Al Heterobimetallic Complexes, [ZrX{(O-2,4- ^{<i>t</i>>Sup>Bu₂C₆H₂-6-CH₂)₃[X = Cl, Et, ^{<i>i>i</i>}Bu; R = Me, Et, ^{<i>i</i>}Bu]. Unique Reactivity of the}	/sub>(μ< 1.1	syb>2

[X = Cl, Et, ^{<i>i</i>}Bu; R = Me, Et, ^{<i>i</i>}Bu]. ^{<i>i</i>}Bu Complex. Organometallics, 2016, 35, 866-874.

#	Article	IF	CITATIONS
235	One-pot synthesis of end-functionalised soluble star-shaped polymers by living ring-opening metathesis polymerisation using a molybdenum-alkylidene catalyst. RSC Advances, 2018, 8, 27703-27708.	1.7	8
236	Light-driven catalytic hydrogenation of carbon dioxide at low-pressure by a trinuclear iridium polyhydride complex. Chemical Communications, 2019, 55, 5087-5090.	2.2	8
237	Phenoxide-Modified Half-Titanocenes Supported on Star-Shaped ROMP Polymers as Catalyst Precursors for Ethylene Copolymerization. Organometallics, 2020, 39, 2998-3009.	1.1	8
238	(Imido)vanadium(V)â€alkyl, Alkylidene Complexes Exhibiting Unique Reactivities towards Olefins, Phenols, and Benzene via 1,2â€Câ€H Bond Activation. Journal of the Chinese Chemical Society, 2012, 59, 139-148.	0.8	7
239	Introduction of reactive functionality by the incorporation of divinylbiphenyl in ethylene copolymerization with styrene or 1â€hexene using aryloxoâ€modified halfâ€ŧitanocenes and MAO catalysts. Journal of Polymer Science Part A, 2013, 51, 2581-2587.	2.5	7
240	Synthesis and structural analysis of niobium(V) complexes containing amine triphenolate ligands of the type, [NbCl(X)(O-2,4-R2C6H2-6-CH2)3N] (R = Me, Bu; X = Cl, CF3SO3), and their use in catalysis for ethylene polymerization. Polyhedron, 2017, 125, 9-17.	1.0	7
241	Synthesis of Soluble Star-Shaped Polymers via In and Out Approach by Ring-Opening Metathesis Polymerization (ROMP) of Norbornene: Factors Affecting the Synthesis. Catalysts, 2018, 8, 670.	1.6	7
242	Synthesis of di- and trinuclear iridium polyhydride complexes surrounded by light-absorbing ligands. Dalton Transactions, 2018, 47, 12046-12050.	1.6	7
243	Synthesis of (Arylmido)niobium(V) Complexes Containing Ketimide, Phenoxide Ligands, and Some Reactions with Phenols and Alcohols. ACS Omega, 2018, 3, 6166-6181.	1.6	7
244	Direct observation of catalytically active species in reaction solution by X-ray absorption spectroscopy (XAS). Japanese Journal of Applied Physics, 2019, 58, 100502.	0.8	7
245	Reactions of (Arylimido)vanadium(V)–Trialkyl Complexes with Phenols: Effects of Arylimido Ligands and Phenols for Formation of the Vanadium Phenoxides. ACS Omega, 2019, 4, 5818-5828.	1.6	7
246	Ethylene/Myrcene Copolymers as New Bio-Based Elastomers Prepared by Coordination Polymerization Using Titanium Catalysts. Macromolecules, 2021, 54, 10049-10058.	2.2	7
247	Selective head-to-tail dimer formation from acrylonitrile catalyzed by phosphine-added nickel(O) complexes. Journal of Molecular Catalysis, 1991, 68, L5-L7.	1.2	6
248	Selective dimerization of acrylonitrile affording methyleneglutaronitrile (2,4-dicyanobutene) catalyzed by Ni(0) complexes in the presence of phosphine. Journal of Molecular Catalysis, 1992, 73, L15-L19.	1.2	6
249	Olefin Polymerization with Non-metallocene Catalysts (Early Transition Metals). Lecture Notes in Quantum Chemistry II, 2014, , 89-117.	0.3	6
250	Synthesis and structural analysis of tungsten-carbonyl dimers bridged with oligo(2,5-dialkoxy-1,4-phenylene vinylene)s through pyridine coordination. Dalton Transactions, 2015, 44, 16728-16736.	1.6	6
251	Effects of terthiophene as the end-groups in triblock copolymers consisting of poly(fluorene) Tj ETQq1 1 0.7843 Photochemistry and Photobiology A: Chemistry, 2017, 349, 18-24.	314 rgBT /(2.0	Overlock 10 Tf 6
252	Synthesis and Structural Analysis of Palladium(II) Complexes Containing Neutral or Anionic <i>C</i> ₂ -Symmetric Bis(oxazoline) Ligands: Effects of Substituents in the 5-Position. ACS Omega, 2017, 2, 3886-3900.	1.6	6

#	Article	IF	CITATIONS
253	Synthesis of Ultrahigh Molecular Weight Polymers Containing Reactive Functionality with Low PDIs by Polymerizations of Long-Chain α-Olefins in the Presence of Their Nonconjugated Dienes by Cp*TiMe2(O-2,6-iPr2C6H3)–Borate Catalyst. Polymers, 2020, 12, 3.	2.0	6
254	Synthesis of Amorphous Ethylene Copolymers with 2-Vinylnaphthalene, 4-Vinylbiphenyl and 1-(4-Vinylphenyl)naphthalene. Macromolecules, 2021, 54, 83-93.	2.2	6
255	Synthesis of ethylene–norbornene–1-octene terpolymers with high 1-octene contents, molar masses, and tunable <i>T</i> _g values, in high yields using half-titanocene catalysts. Polymer Chemistry, 2021, 12, 4372-4383.	1.9	6
256	Ethylene Polymerization Using (Imino)vanadium(V) Dichloride Complexes Containing (Anilido)methyl-pyridine, -quinoline Ligands–Halogenated Al Alkyls Catalyst Systems. Catalysts, 2013, 3, 148-156.	1.6	5
257	Terthiophene Functionalized Conjugated Triarm Polymers Containing Poly(fluorene-2,7-vinylene) Arms Having Different Cores—Synthesis and Their Unique Optical Properties. ACS Omega, 2018, 3, 5052-5063.	1.6	5
258	(Arylimido)vanadium(V)-Alkylidene Complexes as Catalysts for Ring-opening Metathesis Polymerization (ROMP) of Cyclic Olefins: Ligand Design for Exhibiting the High Activity. Chinese Journal of Polymer Science (English Edition), 2019, 37, 943-950.	2.0	5
259	Wellâ€Defined Endâ€Functionalized Conjugated Polymers/Oligomers Exhibiting Unique Emission Properties through the End Groups: The Exclusive Synthesis by Combined Olefin Metathesis with Wittigâ€type Coupling. Macromolecular Materials and Engineering, 2019, 304, 1900307.	1.7	5
260	Light-Assisted Catalytic Hydrogenation of Carbon Dioxide at a Low Pressure by a Dinuclear Iridium Polyhydride Complex. Organometallics, 2021, 40, 98-101.	1.1	5
261	A Greener Approach for Synthesis of Functionalized Polyolefins by Introducing Reactive Functionality into Ethylene Copolymers. Green and Sustainable Chemistry, 2014, 04, 133-143.	0.8	5
262	Recent Progress for Synthesis of Advanced Functional Materials by Olefin Metathesis Polymerization: Controlled Synthesis of Multi-Block, Brush, Star Polymers for Precise Placement/Integration of Functionality. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2013, 71, 2-13.	0.0	5
263	Solution XAS Analysis for Reactions of Phenoxide-Modified (Arylimido)vanadium(V) Dichloride and (Oxo)vanadium(V) Complexes with Al Alkyls: Effect of Al Cocatalyst in Ethylene (Co)polymerization. Catalysts, 2022, 12, 198.	1.6	5
264	High Conversion of CaO-Catalyzed Transesterification of Vegetable Oils with Ethanol. Journal of Oleo Science, 2022, 71, 1051-1062.	0.6	5
265	Fluorinated alcohol modified nickel–phosphine catalyst system for efficient dimerization of propylene. Journal of Molecular Catalysis A, 1999, 137, 1-14.	4.8	4
266	Ethylene Homopolymerization and Ethylene/Norbornene Copolymerization by VCl2(N-2,6-Me2C6H3)(O-2,6-Me2C6H3) - Chlorinated Al Cocatalyst Systems. Studies in Surface Science and Catalysis, 2007, , 305-308.	1.5	4
267	Olefin Polymerization with Half-Metallocene Catalysts. Lecture Notes in Quantum Chemistry II, 2014, , 51-88.	0.3	4
268	Diradical Character of Benzo- and Naphtho-Annelated Thiophene–Pyrrole Mixed Oligomer Dications. Australian Journal of Chemistry, 2014, 67, 722.	0.5	4
269	Vanadium NMR Chemical Shifts of (Imido)vanadium(V) Dichloride Complexes with Imidazolin-2-iminato and Imidazolidin-2-iminato Ligands: Cooperation with Quantum-Chemical Calculations and Multiple Linear Regression Analyses. Journal of Physical Chemistry A, 2017, 121, 9099-9105.	1.1	4
270	Synthesis and Structural Analysis of Four Coordinate (Arylimido)niobium(V) Dimethyl Complexes Containing Phenoxide Ligand: MAO-Free Ethylene Polymerization by the Cationic Nb(V)–Methyl Complex. Organometallics, 2020, 39, 3742-3758.	1.1	4

#	Article	IF	CITATIONS
271	Synchronization in Non-Mirror-Symmetrical Chirogenesis: Non-Helical π–Conjugated Polymers with Helical Polysilane Copolymers in Co-Colloids. Symmetry, 2021, 13, 594.	1.1	4
272	Transesterification of Ethyl-10-undecenoate Using a Cu-Deposited V2O5 Catalyst as a Model Reaction for Efficient Conversion of Plant Oils to Monomers and Fine Chemicals. ACS Omega, 2022, 7, 4372-4380.	1.6	4
273	Synthesis of Titanium(IV) Complexes that Contain the Bis(silylamide) Ligand of the Type [1,8-C10H6(NR)2]2- (R=SiMe3, SitBuMe2, SiiPr3), and Olefin Polymerization Catalyzed by the [1,8-C10H6(NR)2] TiX2(X=Cl, Br)- cocatalyst System. Studies in Surface Science and Catalysis, 1999, 121, 469-472.	1.5	3
274	Efficient introduction of aromatic vinyl group by incorporation of divinylbiphenyl, p -divinylbenzene in syndiospecific styrene polymerization using aryloxo-modified half-titanocene catalysts. Journal of Polymer Science Part A, 2016, 54, 1902-1907.	2.5	3
275	Norbornene-Functionalized Plant Oils for Biobased Thermoset Films and Binders of Silicon-Graphite Composite Electrodes. ACS Omega, 2020, 5, 29678-29687.	1.6	3
276	Organometallic Complexes of Group 5 Metals With Metal-Carbon Sigma and Multiple Bonds. , 2022, , 587-650.		3
277	Effect of <i>para</i> â€Substituents in Ethylene Copolymerizations with 1â€Decene, 1â€Dodecene, and with 2â€Methylâ€1â€Pentene Using Phenoxide Modified Halfâ€Titanocenesâ€MAO Catalyst Systems. ChemistryOpen, 2021, 10, 867-876.	0.9	3
278	Late Transition Metal Complex Catalysts for Olefin Polymerizatian Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2000, 58, 293-305.	0.0	3
279	Synthesis of 2,3-Dimethylbutenes by Dimerization of Propene Using Highly Active Nickel-Phosphine Catalysts in the Presence of Sulfonic Acids and/or Dialkyl Sulfates. Bulletin of the Chemical Society of Japan, 1997, 70, 2671-2676.	2.0	2
280	Ethylene/2-Methyl-1-Pentene Copolymerization Catalyzed by Half-Titanocenes Containing Aryloxo Ligand: Effect of Cyclopentadienyl Fragment. Studies in Surface Science and Catalysis, 2006, 161, 179-184.	1.5	2
281	Effect of Catalyst Loading in Olefin Polymerization Catalyzed by Supported Half-Titanocenes on Polystyrene through Phenoxy Linkage. Studies in Surface Science and Catalysis, 2006, , 213-218.	1.5	2
282	(Imido)Vanadium Complex Catalysts for Efficient Ring-Opening Metathesis Polymerization of Cyclic Olefins. Kobunshi Ronbunshu, 2018, 75, 543-550.	0.2	2
283	Synthesis and Photocatalytic Activities of Dinuclear Iridium Polyhydride Complexes Bearing BINAP Ligands. Organometallics, 2019, 38, 2408-2411.	1.1	2
284	Ring Opening Metathesis Polymerization (ROMP) of Norbornenes by (Arylimido)Niobium(V)–Alkylidene Catalysts, Nb(CHSiMe ₃)(NAr)[OC(CF ₃) ₃](PMe ₃) ₂ . Journal of the Japan Petroleum Institute, 2021, 64, 238-244.	0.4	2
285	18 Effect of cyclopentadienyl fragment in polymerization of ethylene, propylene, and styrene by nonbridged half-metalloce type titanium and zirconium complexes of the type, Cp'MCl2 [N(2,6-Me2 C6) Tj ETQq1	1.0 .7843	1 4 rgBT /O
286	Ligand Effect in Syndiospecific Styrene Polymerization and Ethylene/Styrene Copolymerization by Some Nonbridged Half-Titanocenes Containing Anionic Donor Ligands. Studies in Surface Science and Catalysis, 2006, 161, 147-152.	1.5	1
287	Ring Opening Metathesis Polymerization of Norbornene Catalyzed by V(CH2SiMe3)2(N-2,6-Me2C6H3)(N=CtBu2). In situ generation of the Vanadium-Alkylidene. Studies in Surface Science and Catalysis, 2006, 161, 175-178.	1.5	1
288	Facile, Efficient Synthesis of Starâ€Shaped Ï€â€Conjugated Systems by Combined Olefin Metathesis with Wittigâ€type Coupling. Journal of the Chinese Chemical Society, 2018, 65, 317-324.	0.8	1

#	Article	IF	CITATIONS
289	Interaction between the end groups and the main chain of conjugated polymers by time-resolved EPR and fluorescence spectroscopy. Molecular Physics, 2019, 117, 2664-2672.	0.8	1
290	Effect of supported MAO cocatalysts in ethylene polymerization and ethylene/1-hexene copolymerization using Cp*TiCl2(O-2,6- Pr2C6H3) catalyst. Molecular Catalysis, 2019, 475, 110490.	1.0	1
291	The Effect of SiMe ₃ and SiEt ₃ <i>Para</i> Substituents for High Activity and Introduction of a Hydroxy Group in Ethylene Copolymerization Catalyzed by Phenoxideâ€Modified Halfâ€Titanocenes. Angewandte Chemie, 2020, 132, 23272-23276.	1.6	1
292	Theoretical Studies of Reaction Mechanisms for Half-Titanocene-Catalyzed Styrene Polymerization, Ethylene Polymerization, and Styrene–Ethylene Copolymerization: Roles of the Neutral Ti(III) and the Cationic Ti(IV) Species. Organometallics, 2021, 40, 643-653.	1.1	1
293	Observation of Intramolecular Interaction in Fluorescent Star-Shaped Polymers: Evidence for Energy Hopping between Branch Chains. Journal of Physical Chemistry B, 2020, 124, 11510-11518.	1.2	1
294	Star-Shaped ROMP Polymers Coated with Oligothiophenes That Exhibit Unique Emission. ACS Omega, 2022, 7, 13270-13279.	1.6	1
295	Synthesis of Poly(arylene vinylene)s with Different End Groups by Combining Acyclic Diene Metathesis Polymerization with Wittigâ€type Couplings. Angewandte Chemie, 2017, 129, 5372-5377.	1.6	0
296	Innenrücktitelbild: Synthesis of Poly(arylene vinylene)s with Different End Groups by Combining Acyclic Diene Metathesis Polymerization with Wittigâ€ŧype Couplings (Angew. Chem. 19/2017). Angewandte Chemie, 2017, 129, 5455-5455.	1.6	0
297	Catalysis and Fine Chemicals. Catalysts, 2020, 10, 516.	1.6	0