Dimitris Kiritsis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8933761/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bibliometric Analysis of Model-Based Systems Engineering: Past, Current, and Future. IEEE Transactions on Engineering Management, 2024, 71, 2475-2492.	2.4	3
2	Design Ontology Supporting Model-Based Systems Engineering Formalisms. IEEE Systems Journal, 2022, 16, 5465-5476.	2.9	21
3	Model-Based Systems Engineering Tool-Chain for Automated Parameter Value Selection. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52, 2333-2347.	5.9	11
4	A hybrid Decision Support System for automating decision making in the event of defects in the era of Zero Defect Manufacturing. Journal of Industrial Information Integration, 2022, 26, 100263.	4.3	25
5	The role of big data analytics in the context of modeling design and operation of manufacturing systems. , 2022, , 243-275.		11
6	Model-based system engineering supporting production scheduling based on satisfiability modulo theory. Journal of Industrial Information Integration, 2022, 27, 100329.	4.3	5
7	Systematic Literature Review of MBSE Tool-Chains. Applied Sciences (Switzerland), 2022, 12, 3431.	1.3	11
8	Data-based model maintenance in the era of industry 4.0: A methodology. Journal of Manufacturing Systems, 2022, 63, 304-316.	7.6	7
9	A Semantic Ontology-Based Approach to Support Model-Based Systems Engineering Design for an Aircraft Prognostic Health Management System. , 2022, 2, .		3
10	RMPFQ: A Quality-Oriented Knowledge Modelling Method for Manufacturing Systems Towards Cognitive Digital Twins. , 2022, 2, .		2
11	A Data-Knowledge Hybrid Driven Method for Gas Turbine Gas Path Diagnosis. Applied Sciences (Switzerland), 2022, 12, 5961.	1.3	2
12	A Semantic Model in the Context of Maintenance: A Predictive Maintenance Case Study. Applied Sciences (Switzerland), 2022, 12, 6065.	1.3	6
13	A Cognitive Approach to Manage the Complexity of Digital Twin Systems. Progress in IS, 2021, , 105-115.	0.5	10
14	Comparison Between Product and Process Oriented Zero-Defect Manufacturing (ZDM) Approaches. IFIP Advances in Information and Communication Technology, 2021, , 105-112.	0.5	9
15	A Generic Methodology for Calculating Rescheduling Time for Multiple Unexpected Events in the Era of Zero Defect Manufacturing. Frontiers in Mechanical Engineering, 2021, 7, .	0.8	11
16	A Knowledge Management Approach Supporting Model-Based Systems Engineering. Advances in Intelligent Systems and Computing, 2021, , 581-590.	0.5	7
17	A two-layer criteria evaluation approach for re-scheduling efficiently semi-automated assembly lines with high number of rush orders. Procedia CIRP, 2021, 97, 172-177.	1.0	23
18	Digital Twin-Enabled Decision Support Services in Industrial Ecosystems. Applied Sciences (Switzerland), 2021, 11, 11418.	1.3	19

DIMITRIS KIRITSIS

#	Article	IF	CITATIONS
19	Predictive maintenance key control parameters for achieving efficient Zero Defect Manufacturing. Procedia CIRP, 2021, 104, 80-84.	1.0	10
20	Zero defect manufacturing: state-of-the-art review, shortcomings and future directions in research. International Journal of Production Research, 2020, 58, 1-17.	4.9	256
21	General Modeling Language to Support Modelâ€based Systems Engineering Formalisms (Part 1). Incose International Symposium, 2020, 30, 323-338.	0.2	21
22	A Quality-Oriented Digital Twin Modelling Method for Manufacturing Processes Based on A Multi-Agent Architecture. Procedia Manufacturing, 2020, 51, 309-315.	1.9	41
23	Product Quality Improvement Policies in Industry 4.0: Characteristics, Enabling Factors, Barriers, and Evolution Toward Zero Defect Manufacturing. Frontiers in Computer Science, 2020, 2, .	1.7	67
24	Identification of the critical reaction times for re-scheduling flexible job shops for different types of unexpected events. Procedia CIRP, 2020, 93, 903-908.	1.0	25
25	Cognitive Twins for Supporting Decision-Makings of Internet of Things Systems. Lecture Notes in Mechanical Engineering, 2020, , 105-115.	0.3	32
26	Systems Engineering Approach to Identify Requirements for Digital Twins Development. IFIP Advances in Information and Communication Technology, 2020, , 82-90.	0.5	6
27	Decentralized Industrial IoT Data Management Based on Blockchain and IPFS. IFIP Advances in Information and Communication Technology, 2020, , 222-229.	0.5	13
28	A Computational Method for Identifying the Optimum Buffer Size in the Era of Zero Defect Manufacturing. IFIP Advances in Information and Communication Technology, 2020, , 443-450.	0.5	3
29	A Semantic-driven Approach for Industry 4.0. , 2019, , .		14
30	Optimising online review inspired product attribute classification using the self-learning particle swarm-based Bayesian learning approach. International Journal of Production Research, 2019, 57, 3099-3120.	4.9	18
31	Identification of the Inspection Specifications for Achieving Zero Defect Manufacturing. IFIP Advances in Information and Communication Technology, 2019, , 267-273.	0.5	17
32	A Method for Converting Current Data to RDF in the Era of Industry 4.0. IFIP Advances in Information and Communication Technology, 2019, , 307-314.	0.5	8
33	Human resource optimisation through semanticallyÂenriched data. International Journal of Production Research, 2018, 56, 2855-2877.	4.9	14
34	The Training Data Evaluation Tool: Towards a unified ontology-based solution for industrial training evaluation. Procedia Manufacturing, 2018, 23, 219-224.	1.9	8
35	A Scheduling Tool for Achieving Zero Defect Manufacturing (ZDM): A Conceptual Framework. IFIP Advances in Information and Communication Technology, 2018, , 271-278.	0.5	32
36	The Industrial Ontologies Foundry Proof-of-Concept Project. IFIP Advances in Information and Communication Technology, 2018, , 402-409.	0.5	24

DIMITRIS KIRITSIS

#	Article	IF	CITATIONS
37	Deep learning for big data applications in CAD and PLM – Research review, opportunities and case study. Computers in Industry, 2018, 100, 227-243.	5.7	71
38	Heuristic algorithms for maximising the total profit of end-of-life computer remanufacturing. International Journal of Production Research, 2017, 55, 1350-1367.	4.9	12
39	Energy management in manufacturing: From literature review to a conceptual framework. Journal of Cleaner Production, 2017, 167, 1464-1489.	4.6	178
40	Towards a Methodology for Selecting Product Usage Information Sources for the (Re-)Design of Product Service Systems. , 2016, , .		2
41	Closed-Loop Lifecycle Management of Service and Product in the Internet of Things: Semantic Framework for Knowledge Integration. Sensors, 2016, 16, 1053.	2.1	29
42	Current trends on ICT technologies for enterprise information systems. Computers in Industry, 2016, 79, 14-33.	5.7	118
43	Ontologies in the context of product lifecycle management: state of the art literature review. International Journal of Production Research, 2015, 53, 5657-5668.	4.9	82
44	Degradation mode and criticality analysis based on product usage data. International Journal of Advanced Manufacturing Technology, 2015, 78, 1727-1742.	1.5	6
45	Design modification supporting method based on product usage data in closed-loop PLM. International Journal of Computer Integrated Manufacturing, 2015, 28, 551-568.	2.9	38
46	Semantic technologies for engineering asset life cycle management. International Journal of Production Research, 2013, 51, 7345-7371.	4.9	35
47	Concept for Context-Aware Manufacturing Dashboard Applications. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2013, 46, 204-209.	0.4	6
48	Integrated product relationships management: a model to enable concurrent product design and assembly sequence planning. Journal of Engineering Design, 2012, 23, 544-561.	1.1	39
49	A decision support method for product conceptual design considering product lifecycle factors and resource constraints. International Journal of Advanced Manufacturing Technology, 2011, 52, 865-886.	1.5	12
50	Closed-loop PLM for intelligent products in the era of the Internet of things. CAD Computer Aided Design, 2011, 43, 479-501.	1.4	391
51	An ontology-based approach for Product Lifecycle Management. Computers in Industry, 2010, 61, 787-797.	5.7	167
52	Product lifecycle management – from its history to its new role. International Journal of Product Lifecycle Management, 2010, 4, 360.	0.1	281
53	Research issues on closed-loop PLM. Computers in Industry, 2007, 58, 855-868.	5.7	170
54	Predictive algorithm to determine the suitable time to change automotive engine oil. Computers and Industrial Engineering, 2006, 51, 671-683.	3.4	41

#	Article	IF	CITATIONS
55	A Petri net model for integrated process and job shop production planning. Journal of Intelligent Manufacturing, 2000, 11, 191-207.	4.4	25
56	A review of knowledge-based expert systems for process planning. Methods and problems. International Journal of Advanced Manufacturing Technology, 1995, 10, 240-262.	1.5	74