Yan Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8933552/publications.pdf Version: 2024-02-01

ΥλΝ ΖΗΛΟ

#	Article	IF	CITATIONS
1	Effect of the bio-inspired modification of low-cost membranes with TiO2:ZnO as microbial fuel cell membranes. Chemosphere, 2022, 291, 132840.	4.2	10
2	Membrane bioreactors for hospital wastewater treatment: recent advancements in membranes and processes. Frontiers of Chemical Science and Engineering, 2022, 16, 634-660.	2.3	9
3	Self-assembled embedding of ion exchange materials into nanofiber-based hydrogel framework for fluoride capture. Chemical Engineering Journal, 2022, 431, 134201.	6.6	29
4	Enhanced organic solvent nanofiltration of aligned Kevlar composite membrane by incorporated with amino-polystyrene nanospheres. Journal of Membrane Science, 2022, 647, 120290.	4.1	7
5	Ionic Control of Functional Zeolitic Imidazolate Framework-Based Membrane for Tailoring Selectivity toward Target Ions. ACS Applied Materials & Interfaces, 2022, 14, 11038-11049.	4.0	11
6	An integrated separation technology for high fluoride-containing wastewater treatment: Fluoride removal, membrane fouling behavior and control. Journal of Cleaner Production, 2022, 349, 131225.	4.6	21
7	Investigation of fluoride and silica removal from semiconductor wastewaters with a clean coagulation-ultrafiltration process. Chemical Engineering Journal, 2022, 438, 135562.	6.6	17
8	Advanced ion transfer materials in electro-driven membrane processes for sustainable ion-resource extraction and recovery. Progress in Materials Science, 2022, 128, 100958.	16.0	36
9	Alternating electric field-based ionic control and layer-by-layer assembly of anion exchange membranes for enhancing target anion selectivity. Desalination, 2022, 533, 115773.	4.0	4
10	Vanadium recovery by electrodialysis using polymer inclusion membranes. Journal of Hazardous Materials, 2022, 436, 129315.	6.5	7
11	A review on nanofibrous separators towards enhanced mechanical properties for lithium-ion batteries. Composites Part B: Engineering, 2022, 243, 110105.	5.9	17
12	Composite anti-scaling membrane made of interpenetrating networks of nanofibers for selective separation of lithium. Journal of Membrane Science, 2021, 618, 118668.	4.1	59
13	Review of Thermal- and Membrane-based Water Desalination Technologies and Integration with Alternative Energy Sources. Materials and Energy, 2021, , 1-40.	2.5	0
14	Metal-organic framework based membranes for selective separation of target ions. Journal of Membrane Science, 2021, 634, 119407.	4.1	60
15	A continuous mode operation of bipolar membrane electrodialysis (BMED) for the production of high-pure choline hydroxide from choline chloride. Separation and Purification Technology, 2020, 233, 116054.	3.9	29
16	Nitrate-Selective Anion Exchange Membranes Prepared using Discarded Reverse Osmosis Membranes as Support. Membranes, 2020, 10, 377.	1.4	9
17	The potential of Kevlar aramid nanofiber composite membranes. Journal of Materials Chemistry A, 2020, 8, 7548-7568.	5.2	114
18	Electric field-based ionic control of selective separation layers. Journal of Materials Chemistry A, 2020, 8, 4244-4251.	5.2	40

Υάν Ζηάο

#	Article	IF	CITATIONS
19	Nanofiber Based Organic Solvent Anion Exchange Membranes for Selective Separation of Monovalent anions. ACS Applied Materials & Interfaces, 2020, 12, 7539-7547.	4.0	32
20	Prospects of nanocomposite membranes for water treatment by electrodriven membrane processes. , 2020, , 321-354.		1
21	Symmetrically recombined nanofibers in a high-selectivity membrane for cation separation in high temperature and organic solvent. Journal of Materials Chemistry A, 2019, 7, 20006-20012.	5.2	26
22	Alternating current enhanced deposition of a monovalent selective coating for anion exchange membranes with antifouling properties. Separation and Purification Technology, 2019, 229, 115807.	3.9	31
23	Technology-driven layer-by-layer assembly of a membrane for selective separation of monovalent anions and antifouling. Nanoscale, 2019, 11, 2264-2274.	2.8	70
24	Structure architecture of micro/nanoscale ZIF-L on a 3D printed membrane for a superhydrophobic and underwater superoleophobic surface. Journal of Materials Chemistry A, 2019, 7, 2723-2729.	5.2	79
25	Thin and robust organic solvent cation exchange membranes for ion separation. Journal of Materials Chemistry A, 2019, 7, 13903-13909.	5.2	30
26	MOF-positioned polyamide membranes with a fishnet-like structure for elevated nanofiltration performance. Journal of Materials Chemistry A, 2019, 7, 16313-16322.	5.2	166
27	Integration of selectrodialysis and selectrodialysis with bipolar membrane to salt lake treatment for the production of lithium hydroxide. Desalination, 2019, 465, 1-12.	4.0	53
28	A chemically assembled anion exchange membrane surface for monovalent anion selectivity and fouling reduction. Journal of Materials Chemistry A, 2019, 7, 6348-6356.	5.2	65
29	The Theory and Practice Value of Tunable Nanoscale Interlayer of Graphene: Response to Comment on "Tunable Nanoscale Interlayer of Graphene with Symmetrical Polyelectrolyte Multilayer Architecture for Lithium Extraction― Advanced Materials Interfaces, 2019, 6, 1801924.	1.9	4
30	Mussel-Inspired Monovalent Selective Cation Exchange Membranes Containing Hydrophilic MIL53(Al) Framework for Enhanced Ion Flux. Industrial & Engineering Chemistry Research, 2018, 57, 6275-6283.	1.8	19
31	Graphene Oxide: Tunable Nanoscale Interlayer of Graphene with Symmetrical Polyelectrolyte Multilayer Architecture for Lithium Extraction (Adv. Mater. Interfaces 6/2018). Advanced Materials Interfaces, 2018, 5, 1870025.	1.9	3
32	Tunable Nanoscale Interlayer of Graphene with Symmetrical Polyelectrolyte Multilayer Architecture for Lithium Extraction. Advanced Materials Interfaces, 2018, 5, 1701449.	1.9	57
33	"Sandwich―like structure modified anion exchange membrane with enhanced monovalent selectivity and fouling resistant. Journal of Membrane Science, 2018, 556, 98-106.	4.1	66
34	Electric-pulse layer-by-layer assembled of anion exchange membrane with enhanced monovalent selectivity. Journal of Membrane Science, 2018, 548, 81-90.	4.1	73
35	A high flux organic solvent nanofiltration membrane from Kevlar aramid nanofibers with <i>in situ</i> incorporation of microspheres. Journal of Materials Chemistry A, 2018, 6, 22987-22997.	5.2	69
36	Formation of morphologically confined nanospaces <i>via</i> self-assembly of graphene and nanospheres for selective separation of lithium. Journal of Materials Chemistry A, 2018, 6, 18859-18864.	5.2	46

Υάν Ζηάο

#	Article	IF	CITATIONS
37	Engineering of thermo-/pH-responsive membranes with enhanced gating coefficients, reversible behaviors and self-cleaning performance through acetic acid boosted microgel assembly. Journal of Materials Chemistry A, 2018, 6, 11874-11883.	5.2	42
38	Robust Multilayer Graphene–Organic Frameworks for Selective Separation of Monovalent Anions. ACS Applied Materials & Interfaces, 2018, 10, 18426-18433.	4.0	44
39	A durable and antifouling monovalent selective anion exchange membrane modified by polydopamine and sulfonated reduced graphene oxide. Separation and Purification Technology, 2018, 207, 116-123.	3.9	42
40	Sulfonated reduced graphene oxide modification layers to improve monovalent anions selectivity and controllable resistance of anion exchange membrane. Journal of Membrane Science, 2017, 536, 167-175.	4.1	71
41	A facile avenue to modify polyelectrolyte multilayers on anion exchange membranes to enhance monovalent selectivity and durability simultaneously. Journal of Membrane Science, 2017, 543, 310-318.	4.1	56
42	An anion exchange membrane modified by alternate electro-deposition layers with enhanced monovalent selectivity. Journal of Membrane Science, 2016, 520, 262-271.	4.1	141
43	Mimicking the cell membrane: bio-inspired simultaneous functions with monovalent anion selectivity and antifouling properties of anion exchange membrane. Scientific Reports, 2016, 6, 37285.	1.6	27
44	Recovery of chemically degraded polyethyleneimine by a re-modification method: prolonging the lifetime of cation exchange membranes. RSC Advances, 2016, 6, 16548-16554.	1.7	29