Masato Morimoto

List of Publications by Citations

Source: https://exaly.com/author-pdf/8933237/masato-morimoto-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

33 658 15 25 g-index

33 740 5 avg, IF L-index

#	Paper	IF	Citations
33	Effect of supercritical water on upgrading reaction of oil sand bitumen. <i>Journal of Supercritical Fluids</i> , 2010 , 55, 223-231	4.2	120
32	Fractionation of brown coal by sequential high temperature solvent extraction. Fuel, 2009, 88, 1485-1	49 9 .1	69
31	Comparison of Hansen Solubility Parameter of Asphaltenes Extracted from Bitumen Produced in Different Geographical Regions. <i>Energy & Different Geographical Regions</i> . <i>Different Geographical Regions</i> . <i>Energy & Different Geographical Regions</i> .	4.1	60
30	Low Rank Coal Upgrading in a Flow of Hot Water. Energy & Down; Fuels, 2009, 23, 4533-4539	4.1	41
29	The synergistic effect between supercritical water and redox properties of iron oxide nanoparticles during in-situ catalytic upgrading of heavy oil with formic acid. Isotopic study. <i>Applied Catalysis B: Environmental</i> , 2018 , 230, 91-101	21.8	33
28	Effect of water properties on the degradative extraction of asphaltene using supercritical water. <i>Journal of Supercritical Fluids</i> , 2012 , 68, 113-116	4.2	30
27	Bitumen Cracking in Supercritical Water Upflow. <i>Energy & Description</i> 28, 858-861	4.1	27
26	Conversion of a Wide Range of Low-Rank Coals into Upgraded Coals and Thermoplastic Extracts Having Similar Chemical and Physical Properties Using Degradative Hydrothermal Extraction. <i>Energy & Degradative Route</i> 10, 24, 3060-3065	4.1	25
25	Conditions of Supercritical Water for Good Miscibility with Heavy Oils. <i>Journal of the Japan Petroleum Institute</i> , 2010 , 53, 61-62	1	23
24	Hydrothermal extraction and hydrothermal gasification process for brown coal conversion. <i>Fuel</i> , 2008 , 87, 546-551	7.1	22
23	Molecular composition of extracts obtained by hydrothermal extraction of brown coal. <i>Fuel</i> , 2015 , 159, 751-758	7.1	17
22	Comparison of Thermal Cracking Processes for Athabasca Oil Sand Bitumen: Relationship between Conversion and Yield. <i>Energy & Fuels</i> , 2014 , 28, 6322-6325	4.1	17
21	Determination of Hansen Solubility Parameters of Asphaltene Model Compounds. <i>Energy & Energy & Energy</i>	4.1	16
20	Asphaltene Aggregation Behavior in Bromobenzene Determined By Small-angle X-ray Scattering. <i>Energy & Energy & </i>	4.1	15
19	Application of a Digital Oil Model to Solvent-Based Enhanced Oil Recovery of Heavy Crude Oil. <i>Energy & Energy </i>	4.1	15
18	Solvent Effect of Water on Supercritical Water Treatment of Heavy Oil. <i>Journal of the Japan Petroleum Institute</i> , 2014 , 57, 11-17	1	14
17	Resolution-enhanced Kendrick mass defect plots for the data processing of mass spectra from wood and coal hydrothermal extracts. <i>Fuel</i> , 2019 , 235, 944-953	7.1	14

LIST OF PUBLICATIONS

16	Static solar concentrator with vertical flat plate photovoltaic cells and switchable white/transparent bottom plate. <i>Solar Energy Materials and Solar Cells</i> , 2005 , 87, 299-309	6.4	13
15	Development of Digital Oil for Heavy Crude Oil: Molecular Model and Molecular Dynamics Simulations. <i>Energy & Dynamics</i> 2018, 32, 2781-2792	4.1	11
14	Mapping the Degree of Asphaltene Aggregation, Determined Using Rayleigh Scattering Measurements and Hansen Solubility Parameters. <i>Energy & Description</i> 2015, 29, 2808-2812	4.1	11
13	Isotope tracing study on hydrogen donating capability of supercritical water assisted by formic acid to upgrade heavy oil: Computer simulation vs. experiment. <i>Fuel</i> , 2018 , 225, 161-173	7.1	10
12	Finding of coal organic microspheres during hydrothermal treatment of brown coal. <i>Fuel</i> , 2017 , 195, 143-150	7.1	9
11	Effect of Supercritical Water on Desulfurization Behavior of Oil Sand Bitumen. <i>Journal of the Japan Petroleum Institute</i> , 2012 , 55, 261-266	1	8
10	Construction, Validation, and Application of Digital Oil: Investigation of Asphaltene Association Toward Asphaltene-Precipitation Prediction. <i>SPE Journal</i> , 2018 , 23, 952-968	3.1	7
9	Development of Upgrading Method of Low Rank Coal for its Utilization in Cokemaking Process. <i>Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan</i> , 2010 , 96, 240-248	0.5	7
8	Production of carbonaceous microspheres from wood sawdust by a novel hydrothermal carbonization and extraction method. <i>RSC Advances</i> , 2017 , 7, 42123-42128	3.7	6
7	A novel process for the production of aromatic hydrocarbons from brown coal in water medium by hydrothermal oxidation and catalytic hydrothermal decarboxylation. <i>Fuel</i> , 2016 , 182, 437-445	7.1	5
6	Specific Asphaltene Aggregation in Toluene at Around 50 mg/L. <i>Journal of the Japan Petroleum Institute</i> , 2013 , 56, 58-59	1	5
5	An efficient production of benzene from benzoic acid in subcritical water using a copper(I) oxide catalyst. <i>Green Chemistry</i> , 2015 , 17, 791-794	10	4
4	Construction of Digital Oil for Investigation of Crude Oil Properties at Different Thermodynamic Conditions 2016 ,		3
3	Effect of hydrothermal conditions on production of coal organic microspheres. <i>Fuel</i> , 2018 , 234, 1301-13	3 <i>1</i> ₇ 2 ₁	1
2	Optimizing the Iodide/Iodonium/O2 Oxidation Cycle Enhances the Scope, Selectivity, and Yields of Hydroiodic Acid-Catalyzed Multicomponent Cyclocondensation Reactions. <i>Advanced Synthesis and Catalysis</i> , 2021 , 363, 4720	5.6	
1	Asphaltene Dispersion in Mixed Poor Solvents. <i>Journal of the Japan Petroleum Institute</i> , 2021 , 64, 302-3	30Б	