Chunnian He

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8933233/publications.pdf

Version: 2024-02-01

471061 454577 1,006 32 17 30 citations h-index g-index papers 35 35 35 1087 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Traditional uses, phytochemistry, and pharmacology of the genus Acer (maple): A review. Journal of Ethnopharmacology, 2016, 189, 31-60.	2.0	101
2	The honeysuckle genome provides insight into the molecular mechanism of carotenoid metabolism underlying dynamic flower coloration. New Phytologist, 2020, 227, 930-943.	3.5	68
3	Traditional uses, ten-years research progress on phytochemistry and pharmacology, and clinical studies of the genus Scutellaria. Journal of Ethnopharmacology, 2021, 265, 113198.	2.0	64
4	Genus Paeonia: A comprehensive review on traditional uses, phytochemistry, pharmacological activities, clinical application, and toxicology. Journal of Ethnopharmacology, 2021, 269, 113708.	2.0	63
5	Determination of chemical variability of phenolic and monoterpene glycosides in the seeds of Paeonia species using HPLC and profiling analysis. Food Chemistry, 2013, 138, 2108-2114.	4.2	59
6	Chemical taxonomy of tree peony species from China based on root cortex metabolic fingerprinting. Phytochemistry, 2014, 107, 69-79.	1.4	53
7	Origins, Phytochemistry, Pharmacology, Analytical Methods and Safety of Cortex Moutan (Paeonia) Tj ETQq1 1 (0.784314	rgBT /Overloc
8	Comparative Genome Analysis of Scutellaria baicalensis and Scutellaria barbata Reveals the Evolution of Active Flavonoid Biosynthesis. Genomics, Proteomics and Bioinformatics, 2020, 18, 230-240.	3.0	49
9	Investigation of free amino acid, total phenolics, antioxidant activity and purine alkaloids to assess the health properties of non-Camellia tea. Acta Pharmaceutica Sinica B, 2016, 6, 170-181.	5.7	48
10	Update on Phytochemistry and Pharmacology of Naturally Occurring Resveratrol Oligomers. Molecules, 2017, 22, 2050.	1.7	43
11	The resveratrol oligomers, cis- and trans-gnetin H, from Paeonia suffruticosa seeds inhibit the growth of several human cancer cell lines. Journal of Ethnopharmacology, 2015, 169, 24-33.	2.0	41
12	Traditional uses, phytochemistry, pharmacology, and toxicology of Coreopsis tinctoria Nutt.: A review. Journal of Ethnopharmacology, 2021, 269, 113690.	2.0	30
13	Protective effects of marein on high glucose-induced glucose metabolic disorder in HepG2 cells. Phytomedicine, 2016, 23, 891-900.	2.3	29
14	Artemisia scoparia: Traditional uses, active constituents and pharmacological effects. Journal of Ethnopharmacology, 2021, 273, 113960.	2.0	28
15	Resveratrol oligomers from Paeonia suffruticosa protect mice against cognitive dysfunction by regulating cholinergic, antioxidant and anti-inflammatory pathways. Journal of Ethnopharmacology, 2020, 260, 112983.	2.0	27
16	Marein protects against methylglyoxal-induced apoptosis by activating the AMPK pathway in PC12 cells. Free Radical Research, 2016, 50, 1173-1187.	1.5	26
17	Monoterpene glycosides from the seeds of Paeonia suffruticosa protect HEK 293 cells from irradiation-induced DNA damage. Phytochemistry Letters, 2012, 5, 128-133.	0.6	23
18	The chemopreventive effects of Huangqin-tea against AOM-induced preneoplastic colonic aberrant crypt foci in rats and omics analysis. Food and Function, 2020, 11, 9634-9650.	2.1	20

#	Article	IF	CITATIONS
19	In vitro antitumor effects of two novel oligostilbenes, cis- and trans-suffruticosol D, isolated from Paeonia suffruticosa seeds. International Journal of Oncology, 2016, 48, 646-656.	1.4	19
20	Ku-jin tea (Acer tataricum subsp. ginnala or A. tataricum subsp. theiferum), an underestimated functional beverage rich in antioxidant phenolics. Journal of Functional Foods, 2016, 24, 75-84.	1.6	18
21	Screening of acetylcholinesterase inhibitors and characterizing of phytochemical constituents from Dichocarpum auriculatum (Franch.) W.T. Wang & Dichocarpum aur	2.0	17
22	Bioassay Guided Fractionation Identified Hederagenin as a Major Cytotoxic Agent from Cyclocarya paliurus Leaves. Planta Medica, 2016, 82, 171-179.	0.7	16
23	Comprehensive metabolic profile analysis of the root bark of different species of tree peonies (Paeonia Sect. Moutan). Phytochemistry, 2019, 163, 118-125.	1.4	15
24	Impact of Drying Methods on Phenolic Components and Antioxidant Activity of Sea Buckthorn (Hippophae rhamnoides L.) Berries from Different Varieties in China. Molecules, 2021, 26, 7189.	1.7	15
25	Cis- and Trans-gnetin H from Paeonia suffruticosa suppress inhibitor kappa B kinase phosphorylation in LPS-stimulated human THP-1 cells. Journal of Ethnopharmacology, 2016, 189, 202-209.	2.0	13
26	Chemopreventive effects of Ku-jin tea against AOM-induced precancerous colorectal lesions in rats and metabolomic analysis. Scientific Reports, 2017, 7, 15893.	1.6	12
27	Comparative genomics reveal the convergent evolution of CYP82D and CYP706X members related to flavone biosynthesis in Lamiaceae and Asteraceae. Plant Journal, 2022, 109, 1305-1318.	2.8	12
28	Antiâ€'proliferative and antiâ€'metastasis effects of ten oligostilbenes from the seeds of Paeonia suffruticosa on human cancer cells. Oncology Letters, 2017, 13, 4371-4377.	0.8	11
29	Characterization of stilbenes, in vitro antioxidant and cellular anti-photoaging activities of seed coat extracts from 18 Paeonia species. Industrial Crops and Products, 2022, 177, 114530.	2.5	11
30	Stilbenoids isolated from the roots of Rheum Ihasaense under the guidance of the acetylcholinesterase inhibition activity. Journal of Natural Medicines, 2021, 75, 372-380.	1.1	4
31	Metabolite Profiling Based on UPLCâ€Qâ€TOFâ€MS/MS and the Biological Evaluation of Medicinal Plants of Chinese Dichocarpum (Ranunculaceae). Chemistry and Biodiversity, 2021, 18, e2100432.	1.0	2
32	Abstract 907: Chemopreventive effects of a non-camellia tea against azoxymethane -induced precancerous colorectal lesions in male rats. , 2015, , .		1