
Eva Calvo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8933071/publications.pdf Version: 2024-02-01

EVA CALVO

#	Article	IF	CITATIONS
1	COVID-19 lockdown moderately increased oligotrophy at a marine coastal site. Science of the Total Environment, 2022, 812, 151443.	8.0	8
2	Early deglacial CO2 release from the Sub-Antarctic Atlantic and Pacific oceans. Earth and Planetary Science Letters, 2021, 554, 116649.	4.4	10
3	Global Ocean Sediment Composition and Burial Flux in the Deep Sea. Global Biogeochemical Cycles, 2021, 35, e2020GB006769.	4.9	46
4	Viral-Mediated Microbe Mortality Modulated by Ocean Acidification and Eutrophication: Consequences for the Carbon Fluxes Through the Microbial Food Web. Frontiers in Microbiology, 2021, 12, 635821.	3.5	8
5	A 1â€Millionâ€Year Record of Environmental Change in the Central Mediterranean Sea From Organic Molecular Proxies. Paleoceanography and Paleoclimatology, 2021, 36, e2021PA004289.	2.9	3
6	Controls on Primary Productivity in the Eastern Equatorial Pacific, East of the Galapagos Islands, During the Penultimate Deglaciation. Paleoceanography and Paleoclimatology, 2020, 35, e2019PA003777.	2.9	3
7	MÉS ENLLÀ DE L'ESCALFAMENT GLOBAL. Metode, 2020, , .	0.1	0
8	Effects of low pH and feeding on calcification rates of the cold-water coral <i>Desmophyllum dianthus</i> . PeerJ, 2020, 8, e8236.	2.0	8
9	Varied contribution of the Southern Ocean to deglacial atmospheric CO2 rise. Nature Geoscience, 2019, 12, 1006-1011.	12.9	15
10	An Enhanced Ocean Acidification Observing Network: From People to Technology to Data Synthesis and Information Exchange. Frontiers in Marine Science, 2019, 6, .	2.5	48
11	Paleoproductivity in the SW Pacific Ocean During the Early Holocene Climatic Optimum. Paleoceanography and Paleoclimatology, 2019, 34, 580-599.	2.9	6
12	Evidence for a Holocene Climatic Optimum in the southwest Pacific: A multiproxy study. Paleoceanography, 2017, 32, 763-779.	3.0	15
13	Wind-induced changes in the dynamics of fluorescent organic matter in the coastal NW Mediterranean. Science of the Total Environment, 2017, 609, 1001-1012.	8.0	9
14	The Evolution of Deep Ocean Chemistry and Respired Carbon in the Eastern Equatorial Pacific Over the Last Deglaciation. Paleoceanography, 2017, 32, 1371-1385.	3.0	16
15	Restructuring of the sponge microbiome favors tolerance to ocean acidification. Environmental Microbiology Reports, 2016, 8, 536-544.	2.4	60
16	Atmosphere-ocean linkages in the eastern equatorial Pacific over the early Pleistocene. Paleoceanography, 2016, 31, 522-538.	3.0	3
17	Eutrophication and acidification: Do they induce changes in the dissolved organic matter dynamics in the coastal Mediterranean Sea?. Science of the Total Environment, 2016, 563-564, 179-189.	8.0	18
18	Annual response of two Mediterranean azooxanthellate temperate corals to low-pH and high-temperature conditions. Marine Biology, 2016, 163, 1.	1.5	18

Ενά Calvo

#	Article	IF	CITATIONS
19	Chromophoric signatures of microbial byâ€products in the dark ocean. Geophysical Research Letters, 2016, 43, 7639-7648.	4.0	15
20	Response of marine bacterioplankton pH homeostasis gene expression to elevated CO2. Nature Climate Change, 2016, 6, 483-487.	18.8	68
21	Contrasting effects of ocean acidification on the microbial food web under different trophic conditions. ICES Journal of Marine Science, 2016, 73, 670-679.	2.5	76
22	Response of rare, common and abundant bacterioplankton to anthropogenic perturbations in a Mediterranean coastal site. FEMS Microbiology Ecology, 2015, 91, .	2.7	49
23	Turnover time of fluorescent dissolved organic matter in the dark global ocean. Nature Communications, 2015, 6, 5986.	12.8	209
24	Ocean acidification along the 24.5°N section in the subtropical North Atlantic. Geophysical Research Letters, 2015, 42, 450-458.	4.0	7
25	Anthropogenic CO2 changes in the Equatorial Atlantic Ocean. Progress in Oceanography, 2015, 134, 256-270.	3.2	4
26	Increased reservoir ages and poorly ventilated deep waters inferred in the glacial Eastern Equatorial Pacific. Nature Communications, 2015, 6, 7420.	12.8	33
27	Trends in anthropogenic CO2 in water masses of the Subtropical North Atlantic Ocean. Progress in Oceanography, 2015, 131, 21-32.	3.2	15
28	Resistance of Two Mediterranean Cold-Water Coral Species to Low-pH Conditions. Water (Switzerland), 2014, 6, 59-67.	2.7	34
29	Differential response of two Mediterranean cold-water coral species to ocean acidification. Coral Reefs, 2014, 33, 675-686.	2.2	52
30	Polyp flats, a new system for experimenting with jellyfish polyps, with insights into the effects of ocean acidification. Limnology and Oceanography: Methods, 2014, 12, 212-222.	2.0	5
31	Rapid changes in meridional advection of Southern Ocean intermediate waters to the tropical Pacific during the last 30kyr. Earth and Planetary Science Letters, 2013, 368, 20-32.	4.4	69
32	Detrimental effects of ocean acidification on the economically important Mediterranean red coral (<i><scp>C</scp>orallium rubrum</i>). Global Change Biology, 2013, 19, 1897-1908.	9.5	83
33	Calcification reduction and recovery in native and non-native Mediterranean corals in response to ocean acidification. Journal of Experimental Marine Biology and Ecology, 2012, 438, 144-153.	1.5	34
34	Eastern Equatorial Pacific productivity and related-CO ₂ changes since the last glacial period. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 5537-5541.	7.1	52
35	Effects of climate change on Mediterranean marine ecosystems: the case of the Catalan Sea. Climate Research, 2011, 50, 1-29.	1.1	137
36	Paleo-perspectives on ocean acidification. Trends in Ecology and Evolution, 2010, 25, 332-344.	8.7	157

Ενά Calvo

#	Article	IF	CITATIONS
37	Characterization of contaminant phases in foraminifera carbonates by electron microprobe mapping. Geochemistry, Geophysics, Geosystems, 2008, 9, .	2.5	71
38	Interdecadal climate variability in the Coral Sea since 1708 A.D Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 248, 190-201.	2.3	47
39	Long-term sea surface temperature and climate change in the Australian-New Zealand region. Paleoceanography, 2007, 22, .	3.0	148
40	Antarctic deglacial pattern in a 30 kyr record of sea surface temperature offshore South Australia. Geophysical Research Letters, 2007, 34, .	4.0	93
41	South Tasman Sea alkenone palaeothermometry over the last four glacial/interglacial cycles. Marine Geology, 2006, 230, 73-86.	2.1	56
42	Identification and removal of Mn-Mg-rich contaminant phases on foraminiferal tests: Implications for Mg/Ca past temperature reconstructions. Geochemistry, Geophysics, Geosystems, 2005, 6, n/a-n/a.	2.5	143
43	Preindustrial to Modern Interdecadal Variability in Coral Reef pH. Science, 2005, 309, 2204-2207.	12.6	186
44	Dust-induced changes in phytoplankton composition in the Tasman Sea during the last four glacial cycles. Paleoceanography, 2004, 19, n/a-n/a.	3.0	96
45	Pressurized liquid extraction of selected molecular biomarkers in deep sea sediments used as proxies in paleoceanography. Journal of Chromatography A, 2003, 989, 197-205.	3.7	22
46	The upper end of the UK′37temperature calibration revisited. Geochemistry, Geophysics, Geosystems, 2003, 4, .	2.5	43
47	Marine Isotopic Stage 5e in the Southwest Pacific: Similarities with Antarctica and ENSO inferences. Geophysical Research Letters, 2003, 30, n/a-n/a.	4.0	11
48	High resolution U37K sea surface temperature reconstruction in the Norwegian Sea during the Holocene. Quaternary Science Reviews, 2002, 21, 1385-1394.	3.0	181
49	Apparent long-term cooling of the sea surface in the northeast Atlantic and Mediterranean during the Holocene. Quaternary Science Reviews, 2002, 21, 455-483.	3.0	212
50	Sea surface paleotemperature errors in UK′37estimation due to alkenone measurements near the limit of detection. Paleoceanography, 2001, 16, 226-232.	3.0	44
51	Insolation dependence of the southeastern subtropical Pacific sea surface temperature over the last 400 kyrs. Geophysical Research Letters, 2001, 28, 2481-2484.	4.0	24
52	A latitudinal productivity band in the central North Atlantic over the last 270 kyr: An alkenone perspective. Paleoceanography, 2001, 16, 617-626.	3.0	30
53	New insights into the glacial latitudinal temperature gradients in the North Atlantic. Results from UK′37 sea surface temperatures and terrigenous inputs. Earth and Planetary Science Letters, 2001, 188, 509-519.	4.4	72
54	Sensitivity Effects inUkâ€~37Paleotemperature Estimation by Chemical Ionization Mass Spectrometry. Analytical Chemistry, 2000, 72, 5892-5897.	6.5	11