Frietson Galis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8932890/publications.pdf

Version: 2024-02-01

77	2,869	29	49
papers	citations	h-index	g-index
81	81	81	2485
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A Macroevolutionary Perspective on Developmental Constraints in Animals. , 2021, , 51-67.		o
2	Evolutionary and Developmental Issues of Cervical Ribs/Evolutionary Issues of Cervical Ribs. , 2021, , 23-35.		0
3	Evo-Devo and Cognitive Science. , 2021, , 1209-1220.		2
4	Parthenogenesis and developmental constraints. Evolution & Development, 2020, 22, 205-217.	2.0	13
5	Exploring copy number variants in deceased fetuses and neonates with abnormal vertebral patterns and cervical ribs. Birth Defects Research, 2020, 112, 1513-1525.	1.5	2
6	Miscarriage is associated with cervical ribs in thoracic outlet syndrome patients. Early Human Development, 2020, 144, 105027.	1.8	3
7	Increased prevalence of abnormal vertebral patterning in fetuses and neonates with trisomy 21. Journal of Maternal-Fetal and Neonatal Medicine, 2019, 32, 2280-2286.	1.5	5
8	Development and Evolutionary Constraints in Animals. Annual Review of Ecology, Evolution, and Systematics, 2018, 49, 499-522.	8.3	26
9	Developmental Origins of Limb Developmental Instability in Human Fetuses: Many Abnormalities Make the Difference. Symmetry, 2017, 9, 51.	2.2	3
10	Changes of Fluctuating Asymmetry with Age in Human Fetuses and Young Infants. Symmetry, 2017, 9, 44.	2.2	2
11	High incidence of cervical ribs indicates vulnerable condition in Late Pleistocene woolly rhinoceroses. PeerJ, 2017, 5, e3684.	2.0	13
12	Adverse Fetal and Neonatal Outcome and an Abnormal Vertebral Pattern: A Systematic Review. Obstetrical and Gynecological Survey, 2016, 71, 741-750.	0.4	11
13	Vertebral number is highly evolvable in salamanders and newts (family Salamandridae) and variably associated with climatic parameters. Contributions To Zoology, 2015, 84, 85-113.	0.5	40
14	Determination of hip-joint loading patterns of living and extinct mammals using an inverse Wolff's law approach. Biomechanics and Modeling in Mechanobiology, 2015, 14, 427-432.	2.8	33
15	Homeotic transformations and number changes in the vertebral column of <i>Triturus </i> peerJ, 2015, 3, e1397.	2.0	15
16	When right differs from left: Human limb directional asymmetry emerges during very early development. Laterality, 2014, 19, 591-601.	1.0	6
17	No sexual dimorphism in human prenatal metacarpal ratios. Early Human Development, 2014, 90, 157-160.	1.8	2
18	Fast running restricts evolutionary change of the vertebral column in mammals. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 11401-11406.	7.1	60

#	Article	IF	Citations
19	Higher limb asymmetry in deceased human fetuses and infants with aneuploidy. Scientific Reports, 2014, 4, 3703.	3.3	11
20	Extraordinary incidence of cervical ribs indicates vulnerable condition in Late Pleistocene mammoths. PeerJ, 2014, 2, e318.	2.0	15
21	Amniotic Fluid Deficiency and Congenital Abnormalities both Influence Fluctuating Asymmetry in Developing Limbs of Human Deceased Fetuses. PLoS ONE, 2013, 8, e81824.	2.5	11
22	Quantitative three-dimensional microtextural analyses of tooth wear as a tool for dietary discrimination in fishes. Journal of the Royal Society Interface, 2012, 9, 2225-2233.	3.4	59
23	Evo-Devo of the Human Vertebral Column: On Homeotic Transformations, Pathologies and Prenatal Selection. Evolutionary Biology, 2012, 39, 456-471.	1.1	49
24	Analysis of cervical ribs in a series of human fetuses. Journal of Anatomy, 2011, 219, 403-409.	1.5	44
25	Breaking evolutionary and pleiotropic constraints in mammals: On sloths, manatees and homeotic mutations. EvoDevo, $2011, 2, 11$.	3.2	99
26	Evo Devo and cognitive science. Wiley Interdisciplinary Reviews: Cognitive Science, 2011, 2, 429-440.	2.8	12
27	Evolutionary approaches to autism- an overview and integration. McGill Journal of Medicine, 2011, 13, 38.	0.1	8
28	Sexual Dimorphism in the Prenatal Digit Ratio (2D:4D). Archives of Sexual Behavior, 2010, 39, 57-62.	1.9	216
29	DOLLO'S LAW AND THE IRREVERSIBILITY OF DIGIT LOSS IN BACHIA. Evolution; International Journal of Organic Evolution, 2010, 64, no-no.	2.3	47
30	Human fetuses and limb asymmetry: No evidence for directional asymmetry and support for fluctuating asymmetry as a measure of developmental instability. Animal Biology, 2010, 60, 169-182.	1.0	6
31	The Association Between Autism and Errors in Early Embryogenesis: What Is the Causal Mechanism?. Biological Psychiatry, 2010, 67, 602-607.	1.3	38
32	No association between fluctuating asymmetry in highly stabilized traits and second to fourth digit ratio (2D:4D) in human fetuses. Early Human Development, 2009, 85, 393-398.	1.8	11
33	FLUCTUATING ASYMMETRY DOES NOT CONSISTENTLY REFLECT SEVERE DEVELOPMENTAL DISORDERS IN HUMAN FETUSES. Evolution; International Journal of Organic Evolution, 2009, 63, 1832-1844.	2.3	26
34	Why did the savant syndrome not spread in the population? A psychiatric example of a developmental constraint. Psychiatry Research, 2009, 166, 85-90.	3.3	10
35	Evolutionary novelties: the making and breaking of pleiotropic constraints. Integrative and Comparative Biology, 2007, 47, 409-419.	2.0	50
36	Do large dogs die young?. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2007, 308B, 119-126.	1.3	107

#	Article	IF	CITATIONS
37	EXTREME SELECTION IN HUMANS AGAINST HOMEOTIC TRANSFORMATIONS OF CERVICAL VERTEBRAE. Evolution; International Journal of Organic Evolution, 2006, 60, 2643.	2.3	3
38	EXTREME SELECTION IN HUMANS AGAINST HOMEOTIC TRANSFORMATIONS OF CERVICAL VERTEBRAE. Evolution; International Journal of Organic Evolution, 2006, 60, 2643-2654.	2.3	108
39	Evolutionary conserved structures as indicators of medical risks: increased incidence of cervical ribs after ovarian hyperstimulation in mice. Animal Biology, 2006, 56, 63-68.	1.0	16
40	Extreme selection in humans against homeotic transformations of cervical vertebrae. Evolution; International Journal of Organic Evolution, 2006, 60, 2643-54.	2.3	37
41	Hox genes, digit identities and the theropod/bird transition. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2005, 304B, 198-205.	1.3	30
42	Speciation and Radiation in African Haplochromine Cichlids. , 2004, , 173-191.		10
43	Title is missing!. Acta Biotheoretica, 2003, 51, 237-238.	1.5	3
44	Anti-cancer selection as a source of developmental and evolutionary constraints. BioEssays, 2003, 25, 1035-1039.	2.5	73
45	Why is limb regeneration possible in amphibians but not in reptiles, birds, and mammals?. Evolution & Development, 2003, 5, 208-220.	2.0	46
46	An old controversy solved: bird embryos have five fingers. Trends in Ecology and Evolution, 2003, 18, 7-9.	8.7	31
47	The rise of the Aristotelean worms. Trends in Ecology and Evolution, 2002, 17, 11.	8.7	0
48	Pseudo-homeosis in avian feet. Trends in Ecology and Evolution, 2002, 17, 256.	8.7	4
49	The Digital Arch Model reconsidered. Trends in Ecology and Evolution, 2002, 17, 405.	8.7	0
50	Is it dangerous to grow fast and become large?. Trends in Ecology and Evolution, 2002, 17, 547.	8.7	0
51	Divergence and convergence in early embryonic stages of metazoans. Contributions To Zoology, 2002, 71, 101-113.	0.5	15
52	Conservation of the segmented germband stage: robustness or pleiotropy?. Trends in Genetics, 2002, 18, 504-509.	6.7	75
53	Digit reduction: via repatterning or developmental arrest?. Evolution & Development, 2002, 4, 249-251.	2.0	21
54	Digit identity and digit number: indirect support for the descent of birds from theropod dinosaurs. Trends in Ecology and Evolution, 2001, 16, 16.	8.7	11

#	Article	IF	Citations
55	Why five fingers? Evolutionary constraints on digit numbers. Trends in Ecology and Evolution, 2001, 16, 637-646.	8.7	127
56	Key Innovations and Radiations. , 2001, , 581-605.		37
57	Testing the vulnerability of the phylotypic stage: On modularity and evolutionary conservation. The Journal of Experimental Zoology, 2001, 291, 195-204.	1.4	131
58	Evolutionary history of vertebrate appendicular muscle. BioEssays, 2001, 23, 383-387.	2.5	20
59	Phenotypic plasticity and the possible role of genetic assimilation: Hypoxia-induced trade-offs in the morphological traits of an African cichlid. Ecology Letters, 2000, 3, 387-393.	6.4	173
60	How fast do crossbills speciate? On assortative mating and vocalizations. Trends in Ecology and Evolution, 2000, 15, 357.	8.7	2
61	Why do almost all mammals have seven cervical vertebrae? Developmental constraints, Hox genes, and cancer., 1999, 285, 19-26.		249
62	On the Homology of Structures and <i>Hox</i> Genes: The Vertebral Column. Novartis Foundation Symposium, 1999, 222, 80-94.	1,1	15
63	Why are there so many cichlid species?. Trends in Ecology and Evolution, 1998, 13, 1-2.	8.7	143
64	The evolution of insects and vertebrates: homeobox genes and homology. Trends in Ecology and Evolution, 1996, 11, 402-403.	8.7	8
65	The application of functional morphology to evolutionary studies. Trends in Ecology and Evolution, 1996, 11, 124-129.	8.7	52
66	Pharyngeal biting mechanics in centrarchild and cichlid fishes: insights into a key evolutionary innovation. Journal of Evolutionary Biology, 1996, 9, 641-670.	1.7	83
67	A Novel Biting Mechanism in Damselfishes (Pomacentridae): the Pushing Up of the Lower Pharyngeal Jaw By the Pectoral Girdle. Animal Biology, 1996, 47, 405-410.	0.4	10
68	The relation between morphology and behaviour during ontogenetic and evolutionary changes. Journal of Fish Biology, 1994, 45, 13-26.	1.6	45
69	The relation between morphology and behaviour during ontogenetic and evolutionary changes. Journal of Fish Biology, 1994, 45, 13-26.	1.6	4
70	Interactions between the pharyngeal jaw apparatus, feeding behaviour, and ontogeny in the cichlid fish, Haplochromis piceatus: A study of morphological constraints in evolutionary ecology. The Journal of Experimental Zoology, 1993, 267, 137-154.	1.4	35
71	Morphological constraints on behaviour through ontogeny: The importance of developmental constraints. Marine and Freshwater Behaviour and Physiology, 1993, 23, 119-135.	0.9	16
72	A model for biting in the pharyngeal jaws of a cichlid fish: Haplochromis piceatus. Journal of Theoretical Biology, 1992, 155, 343-368.	1.7	31

#	Article	IF	CITATIONS
73	Ecological and Morphological Aspects of Changes in Food Uptake Through the Ontogeny of Haplochromis Piceatus., 1990,, 281-302.		23
74	Optimal foraging and ontogeny; food selection by Haplochromis piceatus. Oecologia, 1988, 75, 175-184.	2.0	26
75	Patch Time Allocation and Search Intensity of Asobara Tabida Nees (Braconidea), a Larval Parasitoid of Drosophila. Animal Biology, 1980, 31, 596-611.	0.4	48
76	Comparative Functional Morphology of the Gills of African Lacustrine Cichlidae (Pisces, Teleostei). Animal Biology, 1979, 30, 392-430.	0.4	40
77	Hypoxia tolerance of two closely related Haplochromis species (pisces: cichlidae): haplochromis elegans trewavas, 1933 and H. angustifrons boulenger, 1914. Comparative Biochemistry and Physiology A, Comparative Physiology, 1979, 64, 137-139.	0.6	13