Jill R Blankenship

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8932081/publications.pdf

Version: 2024-02-01

24 papers 2,658 citations

331259 21 h-index 25 g-index

25 all docs

25 docs citations

25 times ranked

2699 citing authors

#	Article	IF	CITATIONS
1	Analysis of gene expression in filamentous cells of Candida albicans grown on agar plates. Journal of Biological Methods, 2018, 5, e84.	1.0	6
2	Filamentation Involves Two Overlapping, but Distinct, Programs of Filamentation in the Pathogenic Fungus <i>Candida albicans</i> . G3: Genes, Genomes, Genetics, 2017, 7, 3797-3808.	0.8	67
3	Mutational Analysis of Essential Septins Reveals a Role for Septin-Mediated Signaling in Filamentation. Eukaryotic Cell, 2014, 13, 1403-1410.	3.4	9
4	Candida albicans Czf1 and Efg1 Coordinate the Response to Farnesol during Quorum Sensing, White-Opaque Thermal Dimorphism, and Cell Death. Eukaryotic Cell, 2013, 12, 1281-1292.	3.4	47
5	Rapid Redistribution of Phosphatidylinositol-(4,5)-Bisphosphate and Septins during the Candida albicans Response to Caspofungin. Antimicrobial Agents and Chemotherapy, 2012, 56, 4614-4624.	1.4	30
6	The plant defensin RsAFP2 induces cell wall stress, septin mislocalization and accumulation of ceramides in <i>Candida albicans</i>). Molecular Microbiology, 2012, 84, 166-180.	1.2	123
7	Candida albicans Adds More Weight to Iron Regulation. Cell Host and Microbe, 2011, 10, 93-94.	5.1	14
8	Interaction between the Candida albicans High-Osmolarity Glycerol (HOG) Pathway and the Response to Human \hat{I}^2 -Defensins 2 and 3. Eukaryotic Cell, 2011, 10, 272-275.	3.4	40
9	An Extensive Circuitry for Cell Wall Regulation in Candida albicans. PLoS Pathogens, 2010, 6, e1000752.	2.1	182
10	Transcriptional Responses of <i>Candida albicans</i> to Epithelial and Endothelial Cells. Eukaryotic Cell, 2009, 8, 1498-1510.	3.4	54
11	Regulation of the <i>Candida albicans </i> Cell Wall Damage Response by Transcription Factor Sko1 and PAS Kinase Psk1. Molecular Biology of the Cell, 2008, 19, 2741-2751.	0.9	88
12	How to build a biofilm: a fungal perspective. Current Opinion in Microbiology, 2006, 9, 588-594.	2.3	453
13	Cryptococcus neoformans Isolates from Transplant Recipients Are Not Selected for Resistance to Calcineurin Inhibitors by Current Immunosuppressive Regimens. Journal of Clinical Microbiology, 2005, 43, 464-467.	1.8	24
14	Calcineurin Is Required for Candida albicans To Survive Calcium Stress in Serum. Infection and Immunity, 2005, 73, 5767-5774.	1.0	97
15	In Vitro Interactions between Antifungals and Immunosuppressants against Aspergillus fumigatus. Antimicrobial Agents and Chemotherapy, 2004, 48, 1664-1669.	1.4	120
16	Calcineurin Is Essential for Candida albicans Survival in Serum and Virulence. Eukaryotic Cell, 2003, 2, 422-430.	3.4	177
17	Ergosterol Biosynthesis Inhibitors Become Fungicidal when Combined with Calcineurin Inhibitors against Candida albicans , Candida glabrata , and Candida krusei. Antimicrobial Agents and Chemotherapy, 2003, 47, 956-964.	1.4	246
18	Teaching old drugs new tricks: reincarnating immunosuppressants as antifungal drugs. Current Opinion in Investigational Drugs, 2003, 4, 192-9.	2.3	42

#	ARTICLE	IF	CITATION
19	c-Myc promoter activation in medulloblastoma. Cancer Research, 2003, 63, 4773-6.	0.4	28
20	Calcineurin is essential for survival during membrane stress in Candida albicans. EMBO Journal, 2002, 21, 546-559.	3.5	302
21	A PCR-based strategy to generate integrative targeting alleles with large regions of homology. Microbiology (United Kingdom), 2002, 148, 2607-2615.	0.7	290
22	Genetic variation and asexual reproduction in the facultatively parthenogenetic cockroachNauphoeta cinerea: implications for the evolution of sex. Journal of Evolutionary Biology, 2001, 14, 68-74.	0.8	49
23	Rapamycin and Less Immunosuppressive Analogs Are Toxic to Candida albicans and Cryptococcus neoformans via FKBP12-Dependent Inhibition of TOR. Antimicrobial Agents and Chemotherapy, 2001, 45, 3162-3170.	1.4	135
24	Developmental constraints on the mode of reproduction in the facultatively parthenogenetic cockroach Nauphoeta cinerea. Evolution & Development, 1999, 1, 90-99.	1.1	33