Estrella Alvarez

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/8932054/estrella-alvarez-publications-by-year.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

47
papers

2,077
citations

45
g-index

50
ext. papers

2,252
ext. citations

4,41
avg, IF
L-index

#	Paper	IF	Citations
47	Surface Tension of N-Methyldiethanolamine in Methanol or in Methanol Aqueous Solutions as a Solvent at Temperatures from 293.15 to 323.15 K. <i>Journal of Chemical & Data</i> , 2021, 66, 722-733	2.8	1
46	Drop-in performance of the low-GWP alternative refrigerants R452B and R454B in an R410A liquid-to-water heat pump. <i>Applied Thermal Engineering</i> , 2021 , 182, 116049	5.8	9
45	Influence of the refrigerant charge in an R407C liquid-to-water heat pump for space heating and domestic hot water production. <i>International Journal of Refrigeration</i> , 2020 , 110, 28-37	3.8	7
44	Density, Viscosity, and Refractive Index of N-Methyldiethanolamine in Blends of Methanol + Water as Solvent and Their Binary Systems from T = (293.15 to 323.15) K. <i>Journal of Chemical & Engineering Data</i> , 2020 , 65, 4417-4434	2.8	3
43	Performance analysis of a R407C liquid-to-water heat pump: Effect of a liquid por heat exchanger and domestic hot water production. <i>International Journal of Refrigeration</i> , 2019 , 101, 125-13.	5 ^{3.8}	5
42	CO2 absorption into N-methyldiethanolamine aqueous-organic solvents. <i>Chemical Engineering Journal</i> , 2016 , 283, 1069-1080	14.7	28
41	Physicochemical Characterization of Aqueous Two-Phase Systems Containing Tween20 and Sodium Salts from T = (288.15 to 318.15) K. <i>Journal of Chemical & Engineering Data</i> , 2014 , 59, 926-935	2.8	3
40	Comparative Study of CO2 Absorption in Aqueous Mixtures of Methyldiethanolamine (MDEA) and Methanol, Focusing on the Temperature and Concentration Influence over the Absorption Rate. <i>Defect and Diffusion Forum</i> , 2014 , 353, 193-198	0.7	
39	Surface Tensions of Three Amyl Alcohol + Ethanol Binary Mixtures from (293.15 to 323.15) K. <i>Journal of Chemical & Data</i> , 2011, 56, 4235-4238	2.8	15
38	Electrochemical Mass Transfer Measurements of CO2 in MDEA Solutions. <i>Defect and Diffusion Forum</i> , 2011 , 312-315, 87-92	0.7	
37	Density, Speed of Sound, Isentropic Compressibility, and Excess Volume of Binary Mixtures of 1-Amino-2-propanol or 3-Amino-1-propanol with 2-Amino-2-methyl-1-propanol, Diethanolamine, or Triethanolamine from (293.15 to 323.15) K. <i>Journal of Chemical & Damp; Engineering Data</i> , 2010 , 55, 2567-	2.8 2575	29
36	Density, Speed of Sound, Isentropic Compressibility, and Excess Volume of (Monoethanolamine + 2-Amino-2-methyl-1-propanol), (Monoethanolamine + Triethanolamine), and (Monoethanolamine + N-Methyldiethanolamine) at Temperatures from (293.15 to 323.15) K. <i>Journal of Chemical & Description</i>	2.8	33
35	Engineering Data, 2010 , 55, 994-999 Surface Tension of Binary Mixtures of N-Methyldiethanolamine and Triethanolamine with Ethanol. Journal of Chemical & Data, 2008 , 53, 874-876	2.8	19
34	Surface Tension of Aqueous Binary Mixtures of 2-(Methylamino)ethanol and 2-(Ethylamino)ethanol and Aqueous Ternary Mixtures of These Amines with Triethanolamine or N-Methyldiethanolamine from (293.15 to 323.15) K. <i>Journal of Chemical & Engineering Data</i> , 2008 , 53, 318-321	2.8	17
33	Rheological Characterization of Commercial Baby Fruit Purees. <i>International Journal of Food Properties</i> , 2008 , 11, 321-329	3	8
32	Effect of bubble contamination on gasliquid mass transfer coefficient on CO2 absorption in amine solutions. <i>Chemical Engineering Journal</i> , 2008 , 137, 422-427	14.7	28
31	Effect of temperature on carbon dioxide absorption in monoethanolamine solutions. <i>Chemical Engineering Journal</i> , 2008 , 138, 295-300	14.7	33

30	Density and Speed of Sound of Binary Mixtures of N-Methyldiethanolamine and Triethanolamine with Ethanol. <i>Journal of Chemical & Engineering Data</i> , 2007 , 52, 2059-2061	2.8	27
29	Rheological properties of fruit purees: Effect of cooking. <i>Journal of Food Engineering</i> , 2007 , 80, 763-769	6	49
28	Comparison of Rheological Behaviour of Salad Sauces. <i>International Journal of Food Properties</i> , 2006 , 9, 907-915	3	6
27	Densities and Viscosities of Aqueous Ternary Mixtures of 2-(Methylamino)ethanol and 2-(Ethylamino)ethanol with Diethanolamine, Triethanolamine, N-Methyldiethanolamine, or 2-Amino-1-methyl-1-propanol from 298.15 to 323.15 K. <i>Journal of Chemical & Data</i> ,	2.8	60
26	Density, Viscosity, Excess Molar Volume, and Viscosity Deviation of Three Amyl Alcohols + Ethanol Binary Mixtures from 293.15 to 323.15 K. <i>Journal of Chemical & Engineering Data</i> , 2006 , 51, 940-945	52.8	74
25	Effect of Temperature on Rheological Properties of Different Jams. <i>International Journal of Food Properties</i> , 2006 , 9, 135-146	3	24
24	Densities and Viscosities of Aqueous Solutions of Pyrrolidine and Piperidine from (20 to 50) LC. Journal of Chemical & Data, 2005, 50, 1829-1832	2.8	21
23	Rheological Behavior of Powdered Baby Foods. <i>International Journal of Food Properties</i> , 2005 , 8, 79-88	3	7
22	Effects of temperature and concentration on carboxymethylcellulose with sucrose rheology. Journal of Food Engineering, 2005 , 71, 419-424	6	51
21	Surface Tension of Aqueous Binary Mixtures of 1-Amino-2-Propanol and 3-Amino-1-Propanol, and Aqueous Ternary Mixtures of These Amines with Diethanolamine, Triethanolamine, and 2-Amino-2-methyl-1-propanol from (298.15 to 323.15) K. <i>Journal of Chemical & Chemical &</i>	2.8	54
20	Conductivity of Sodium Bis(2-ethylhexyl)sulfosuccinate/Isooctane/Water Microemulsions Containing Phase-Transfer Catalysts. 2 <i>Journal of Chemical & Data</i> , 2001, 46, 526-534	2.8	5
19	Injection of steam into the mashing process as alternative method for the temperature control and low-cost of production. <i>Journal of Food Engineering</i> , 2000 , 43, 193-196	6	5
18	Model based in neural networks for the prediction of the mass transfer coefficients in bubble columns. Study in Newtonian and non-Newtonianian fluids. <i>International Communications in Heat and Mass Transfer</i> , 2000 , 27, 93-98	5.8	15
17	Mass Transfer and Influence of Physical Properties of Solutions in a Bubble Column. <i>Chemical Engineering Research and Design</i> , 2000 , 78, 889-893	5.5	59
16	Conductivity of Sodium Bis(2-ethylhexyl)sulfosuccinate/Isooctane/Water Microemulsions Containing Phase-Transfer Catalysts. <i>Journal of Chemical & Engineering Data</i> , 2000 , 45, 428-432	2.8	7
15	Rebuttal to Comments on D esign of a Combined Mixing Rule for the Prediction of Vapor l iquid Equilibria Using Neural Networks[]Industrial & amp; Engineering Chemistry Research, 2000 , 39, 241-241	3.9	
14	An approach to control of bioreactors. Application of the gain-scheduling method. <i>Journal of Automated Methods and Management in Chemistry</i> , 1999 , 21, 39-43		
13	Fuzzy logic control for the isomerized hop pellets production. <i>Journal of Food Engineering</i> , 1999 , 39, 14.	56150	8

12	Design of a Combined Mixing Rule for the Prediction of Vapor l liquid Equilibria Using Neural Networks. <i>Industrial & Engineering Chemistry Research</i> , 1999 , 38, 1706-1711	3.9	21
11	Effect of Temperature on the Electrical Conductivity of Sodium Bis(2-ethylhexyl)sulfosuccinate + 2,2,4-Trimethylpentane + Water Microemulsions. Influence of Alkylamines. <i>Journal of Chemical & Chemical Stamp; Engineering Data</i> , 1999 , 44, 1286-1290	2.8	5
10	Effects of Temperature on the Conductivity of Microemulsions: Influence of Sodium Hydroxide and Hydrochloric Acid. <i>Journal of Chemical & Engineering Data</i> , 1999 , 44, 846-849	2.8	10
9	Surface Tension of Binary Mixtures of Water +N-Methyldiethanolamine and Ternary Mixtures of This Amine and Water with Monoethanolamine, Diethanolamine, and 2-Amino-2-methyl-1-propanol from 25 to 50 °C. Journal of Chemical & Engineering Data, 1998, 43, 1027-1029	2.8	76
8	Effect of the Temperature on the Conductivity of Sodium Bis(2-ethylhexyl)sulfosuccinate + 2,2,4-Trimethylpentane + Water Microemulsions in the Presence of Ureas and Thioureas. <i>Journal of Chemical & Data</i> , 1998, 43, 123-127	2.8	24
7	Density, Viscosity, and Surface Tension of Sodium Carbonate + Sodium Bicarbonate Buffer Solutions in the Presence of Glycerine, Glucose, and Sucrose from 25 to 40 °C. <i>Journal of Chemical & Chemical Regineering Data</i> , 1998 , 43, 128-132	2.8	14
6	Surface Tension of Binary Mixtures of Water + Monoethanolamine and Water + 2-Amino-2-methyl-1-propanol and Tertiary Mixtures of These Amines with Water from 25 °C to 50 °C. Journal of Chemical & Chemical & Camp; Engineering Data, 1997, 42, 57-59	2.8	166
5	Surface Tension of Organic Acids + Water Binary Mixtures from 20 LC to 50 LC. <i>Journal of Chemical & Chemical Surp; Engineering Data</i> , 1997 , 42, 957-960	2.8	101
4	Density and Viscosity of Aqueous Solutions of Sodium Dithionite, Sodium Hydroxide, Sodium Dithionite + Sucrose, and Sodium Dithionite + Sodium Hydroxide + Sucrose from 25 °C to 40 °C. Journal of Chemical & Data, 1996, 41, 244-248	2.8	19
3	Surface Tension of Aqueous Solutions of Diethanolamine and Triethanolamine from 25 °C to 50 °C. Journal of Chemical & Engineering Data, 1996, 41, 806-808	2.8	76
2	Surface Tension of Alcohol Water + Water from 20 to 50 .degree.C. <i>Journal of Chemical & Engineering Data</i> , 1995 , 40, 611-614	2.8	831
1	Density, Viscosity, and Surface Tension of Aqueous Solutions of Sodium Sulfite and Sodium Sulfite + Sucrose from 25 to 40 .degree.C. <i>Journal of Chemical & Chemical </i>	2.8	17