Estrella Alvarez

List of Publications by Citations

Source: https://exaly.com/author-pdf/8932054/estrella-alvarez-publications-by-citations.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

2,077 21 45 g-index

50 2,252 4 4.41 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
47	Surface Tension of Alcohol Water + Water from 20 to 50 .degree.C. <i>Journal of Chemical &</i> Engineering Data, 1995 , 40, 611-614	2.8	831
46	Surface Tension of Binary Mixtures of Water + Monoethanolamine and Water + 2-Amino-2-methyl-1-propanol and Tertiary Mixtures of These Amines with Water from 25 °C to 50 °C. Journal of Chemical & Camp; Engineering Data, 1997, 42, 57-59	2.8	166
45	Surface Tension of Organic Acids + Water Binary Mixtures from 20 LC to 50 LC. <i>Journal of Chemical & Chemical Comp; Engineering Data</i> , 1997 , 42, 957-960	2.8	101
44	Surface Tension of Binary Mixtures of Water +N-Methyldiethanolamine and Ternary Mixtures of This Amine and Water with Monoethanolamine, Diethanolamine, and 2-Amino-2-methyl-1-propanol from 25 to 50 °C. Journal of Chemical & Engineering Data, 1998, 43, 1027-1029	2.8	76
43	Surface Tension of Aqueous Solutions of Diethanolamine and Triethanolamine from 25 °C to 50 °C. Journal of Chemical & Engineering Data, 1996, 41, 806-808	2.8	76
42	Density, Viscosity, Excess Molar Volume, and Viscosity Deviation of Three Amyl Alcohols + Ethanol Binary Mixtures from 293.15 to 323.15 K. <i>Journal of Chemical & Che</i>	2.8	74
41	Densities and Viscosities of Aqueous Ternary Mixtures of 2-(Methylamino)ethanol and 2-(Ethylamino)ethanol with Diethanolamine, Triethanolamine, N-Methyldiethanolamine, or 2-Amino-1-methyl-1-propanol from 298.15 to 323.15 K. <i>Journal of Chemical & Dietamp; Engineering Data</i> ,	2.8	60
40	Mass Transfer and Influence of Physical Properties of Solutions in a Bubble Column. <i>Chemical Engineering Research and Design</i> , 2000 , 78, 889-893	5.5	59
39	Surface Tension of Aqueous Binary Mixtures of 1-Amino-2-Propanol and 3-Amino-1-Propanol, and Aqueous Ternary Mixtures of These Amines with Diethanolamine, Triethanolamine, and 2-Amino-2-methyl-1-propanol from (298.15 to 323.15) K. <i>Journal of Chemical & Engineering</i>	2.8	54
38	Effects of temperature and concentration on carboxymethylcellulose with sucrose rheology. Journal of Food Engineering, 2005, 71, 419-424	6	51
37	Rheological properties of fruit purees: Effect of cooking. <i>Journal of Food Engineering</i> , 2007 , 80, 763-769	6	49
36	Density, Speed of Sound, Isentropic Compressibility, and Excess Volume of (Monoethanolamine + 2-Amino-2-methyl-1-propanol), (Monoethanolamine + Triethanolamine), and (Monoethanolamine + N-Methyldiethanolamine) at Temperatures from (293.15 to 323.15) K. <i>Journal of Chemical & Engineering Data</i> , 2010 , 55, 994-999	2.8	33
35	Effect of temperature on carbon dioxide absorption in monoethanolamine solutions. <i>Chemical Engineering Journal</i> , 2008 , 138, 295-300	14.7	33
34	Density, Speed of Sound, Isentropic Compressibility, and Excess Volume of Binary Mixtures of 1-Amino-2-propanol or 3-Amino-1-propanol with 2-Amino-2-methyl-1-propanol, Diethanolamine, or Triethanolamine from (293.15 to 323.15) K. <i>Journal of Chemical & </i>	2.8 2 575	29
33	CO2 absorption into N-methyldiethanolamine aqueous-organic solvents. <i>Chemical Engineering Journal</i> , 2016 , 283, 1069-1080	14.7	28
32	Effect of bubble contamination on gasliquid mass transfer coefficient on CO2 absorption in amine solutions. <i>Chemical Engineering Journal</i> , 2008 , 137, 422-427	14.7	28
31	Density and Speed of Sound of Binary Mixtures of N-Methyldiethanolamine and Triethanolamine with Ethanol. <i>Journal of Chemical & Engineering Data</i> , 2007 , 52, 2059-2061	2.8	27

(2020-1998)

30	Effect of the Temperature on the Conductivity of Sodium Bis(2-ethylhexyl)sulfosuccinate + 2,2,4-Trimethylpentane + Water Microemulsions in the Presence of Ureas and Thioureas. <i>Journal of Chemical & Data</i> , 1998, 43, 123-127	2.8	24
29	Effect of Temperature on Rheological Properties of Different Jams. <i>International Journal of Food Properties</i> , 2006 , 9, 135-146	3	24
28	Densities and Viscosities of Aqueous Solutions of Pyrrolidine and Piperidine from (20 to 50) LC. Journal of Chemical & Data, 2005, 50, 1829-1832	2.8	21
27	Design of a Combined Mixing Rule for the Prediction of Vaporlliquid Equilibria Using Neural Networks. <i>Industrial & Design Chemistry Research</i> , 1999 , 38, 1706-1711	3.9	21
26	Surface Tension of Binary Mixtures of N-Methyldiethanolamine and Triethanolamine with Ethanol. <i>Journal of Chemical & Data</i> , 2008, 53, 874-876	2.8	19
25	Density and Viscosity of Aqueous Solutions of Sodium Dithionite, Sodium Hydroxide, Sodium Dithionite + Sucrose, and Sodium Dithionite + Sodium Hydroxide + Sucrose from 25 °C to 40 °C. Journal of Chemical & Data, 1996, 41, 244-248	2.8	19
24	Surface Tension of Aqueous Binary Mixtures of 2-(Methylamino)ethanol and 2-(Ethylamino)ethanol and Aqueous Ternary Mixtures of These Amines with Triethanolamine or N-Methyldiethanolamine from (293.15 to 323.15) K. <i>Journal of Chemical & Chemi</i>	2.8	17
23	Density, Viscosity, and Surface Tension of Aqueous Solutions of Sodium Sulfite and Sodium Sulfite + Sucrose from 25 to 40 .degree.C. <i>Journal of Chemical & Engineering Data</i> , 1995 , 40, 1101-1105	2.8	17
22	Surface Tensions of Three Amyl Alcohol + Ethanol Binary Mixtures from (293.15 to 323.15) K. Journal of Chemical & Engineering Data, 2011, 56, 4235-4238	2.8	15
21	Model based in neural networks for the prediction of the mass transfer coefficients in bubble columns. Study in Newtonian and non-Newtonianian fluids. <i>International Communications in Heat and Mass Transfer</i> , 2000 , 27, 93-98	5.8	15
20	Density, Viscosity, and Surface Tension of Sodium Carbonate + Sodium Bicarbonate Buffer Solutions in the Presence of Glycerine, Glucose, and Sucrose from 25 to 40 °C. Journal of Chemical & Samp; Engineering Data, 1998, 43, 128-132	2.8	14
19	Effects of Temperature on the Conductivity of Microemulsions: Influence of Sodium Hydroxide and Hydrochloric Acid. <i>Journal of Chemical & Engineering Data</i> , 1999 , 44, 846-849	2.8	10
18	Drop-in performance of the low-GWP alternative refrigerants R452B and R454B in an R410A liquid-to-water heat pump. <i>Applied Thermal Engineering</i> , 2021 , 182, 116049	5.8	9
17	Rheological Characterization of Commercial Baby Fruit Purees. <i>International Journal of Food Properties</i> , 2008 , 11, 321-329	3	8
16	Fuzzy logic control for the isomerized hop pellets production. <i>Journal of Food Engineering</i> , 1999 , 39, 14	5 <i>6</i> 150	8
15	Rheological Behavior of Powdered Baby Foods. International Journal of Food Properties, 2005, 8, 79-88	3	7
14	Conductivity of Sodium Bis(2-ethylhexyl)sulfosuccinate/Isooctane/Water Microemulsions Containing Phase-Transfer Catalysts. <i>Journal of Chemical & Data</i> , 2000, 45, 428-432	2.8	7
13	Influence of the refrigerant charge in an R407C liquid-to-water heat pump for space heating and domestic hot water production. <i>International Journal of Refrigeration</i> , 2020 , 110, 28-37	3.8	7

12	Comparison of Rheological Behaviour of Salad Sauces. <i>International Journal of Food Properties</i> , 2006 , 9, 907-915	3	6
11	Performance analysis of a R407C liquid-to-water heat pump: Effect of a liquid por heat exchanger and domestic hot water production. <i>International Journal of Refrigeration</i> , 2019 , 101, 125-13	5 ^{3.8}	5
10	Injection of steam into the mashing process as alternative method for the temperature control and low-cost of production. <i>Journal of Food Engineering</i> , 2000 , 43, 193-196	6	5
9	Conductivity of Sodium Bis(2-ethylhexyl)sulfosuccinate/Isooctane/Water Microemulsions Containing Phase-Transfer Catalysts. 2 <i>Journal of Chemical & Data</i> , 2001, 46, 526-534	2.8	5
8	Effect of Temperature on the Electrical Conductivity of Sodium Bis(2-ethylhexyl)sulfosuccinate + 2,2,4-Trimethylpentane + Water Microemulsions. Influence of Alkylamines. <i>Journal of Chemical & Engineering Data</i> , 1999 , 44, 1286-1290	2.8	5
7	Physicochemical Characterization of Aqueous Two-Phase Systems Containing Tween20 and Sodium Salts from T = (288.15 to 318.15) K. <i>Journal of Chemical & Engineering Data</i> , 2014 , 59, 926-935	2.8	3
6	Density, Viscosity, and Refractive Index of N-Methyldiethanolamine in Blends of Methanol + Water as Solvent and Their Binary Systems from T = (293.15 to 323.15) K. <i>Journal of Chemical & Engineering Data</i> , 2020 , 65, 4417-4434	2.8	3
5	Surface Tension of N-Methyldiethanolamine in Methanol or in Methanol Aqueous Solutions as a Solvent at Temperatures from 293.15 to 323.15 K. <i>Journal of Chemical & Data</i> , 2021, 66, 722-733	2.8	1
4	Comparative Study of CO2 Absorption in Aqueous Mixtures of Methyldiethanolamine (MDEA) and Methanol, Focusing on the Temperature and Concentration Influence over the Absorption Rate. <i>Defect and Diffusion Forum</i> , 2014 , 353, 193-198	0.7	
3	Electrochemical Mass Transfer Measurements of CO2 in MDEA Solutions. <i>Defect and Diffusion Forum</i> , 2011 , 312-315, 87-92	0.7	
2	Rebuttal to Comments on Design of a Combined Mixing Rule for the Prediction of Vapor Liquid Equilibria Using Neural Networks [Industrial & Equilibria Chemistry Research, 2000, 39, 241-241]	3.9	
1	An approach to control of bioreactors. Application of the gain-scheduling method. <i>Journal of</i>		