
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8932015/publications.pdf Version: 2024-02-01

Цимс-Ни Он

#	Article	IF	CITATIONS
1	tsRFun: a comprehensive platform for decoding human tsRNA expression, functions and prognostic value by high-throughput small RNA-Seq and CLIP-Seq data. Nucleic Acids Research, 2022, 50, D421-D431.	6.5	26
2	Pol3Base: a resource for decoding the interactome, expression, evolution, epitranscriptome and disease variations of Pol III-transcribed ncRNAs. Nucleic Acids Research, 2022, 50, D279-D286.	6.5	6
3	Integrated Analysis Reveals the Characteristics and Effects of SARS-CoV-2 Maternal–Fetal Transmission. Frontiers in Microbiology, 2022, 13, 813187.	1.5	3
4	SARS-CoV-2 causes a significant stress response mediated by small RNAs in the blood of COVID-19 patients. Molecular Therapy - Nucleic Acids, 2022, 27, 751-762.	2.3	12
5	TP53-inducible putative long noncoding RNAs encode functional polypeptides that suppress cell proliferation. Genome Research, 2022, 32, 1026-1041.	2.4	11
6	ColorCells: a database of expression, classification and functions of lncRNAs in single cells. Briefings in Bioinformatics, 2021, 22, .	3.2	8
7	deepBase v3.0: expression atlas and interactive analysis of ncRNAs from thousands of deep-sequencing data. Nucleic Acids Research, 2021, 49, D877-D883.	6.5	29
8	The functional analysis of transiently upregulated miR-101 suggests a "braking―regulatory mechanism during myogenesis. Science China Life Sciences, 2021, 64, 1612-1623.	2.3	7
9	PERK Signaling Controls Myoblast Differentiation by Regulating MicroRNA Networks. Frontiers in Cell and Developmental Biology, 2021, 9, 670435.	1.8	11
10	The cardiac translational landscape reveals that micropeptides are new players involved in cardiomyocyte hypertrophy. Molecular Therapy, 2021, 29, 2253-2267.	3.7	24
11	Genome-wide identification of microRNA targets reveals positive regulation of the Hippo pathway by miR-122 during liver development. Cell Death and Disease, 2021, 12, 1161.	2.7	7
12	Ribosome profiling analysis identified a KRAS-interacting microprotein that represses oncogenic signaling in hepatocellular carcinoma cells. Science China Life Sciences, 2020, 63, 529-542.	2.3	36
13	Novel organization of mitochondrial minicircles and guide RNAs in the zoonotic pathogen Trypanosoma lewisi. Nucleic Acids Research, 2020, 48, 9747-9761.	6.5	10
14	Classification and function of <scp>RNA</scp> –protein interactions. Wiley Interdisciplinary Reviews RNA, 2020, 11, e1601.	3.2	26
15	Noncoding RNA: from dark matter to bright star. Science China Life Sciences, 2020, 63, 463-468.	2.3	32
16	Differential impacts of charcoal-stripped fetal bovine serum on c-Myc among distinct subtypes of breast cancer cell lines. Biochemical and Biophysical Research Communications, 2020, 526, 267-272.	1.0	7
17	Histone H3 trimethylation at lysine 36 guides m6A RNA modification co-transcriptionally. Nature, 2019, 567, 414-419.	13.7	452
18	An <scp>LTR</scp> retrotransposonâ€derived lnc <scp>RNA</scp> interacts with <scp>RNF</scp> 169 to promote homologous recombination. EMBO Reports, 2019, 20, e47650.	2.0	28

#	Article	IF	CITATIONS
19	MicroRNA-122 supports robust innate immunity in hepatocytes by targeting the RTKs/STAT3 signaling pathway. ELife, 2019, 8, .	2.8	32
20	Recognition of RNA N6-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nature Cell Biology, 2018, 20, 285-295.	4.6	1,650
21	A group of tissueâ€specific microRNAs contribute to the silencing of CUX1 in different cell lineages during development. Journal of Cellular Biochemistry, 2018, 119, 6238-6248.	1.2	5
22	Inhibition of the JNK/MAPK signaling pathway by myogenesis-associated miRNAs is required for skeletal muscle development. Cell Death and Differentiation, 2018, 25, 1581-1597.	5.0	79
23	Comprehensive Genomic Characterization of RNA-Binding Proteins across Human Cancers. Cell Reports, 2018, 22, 286-298.	2.9	166
24	dreamBase: DNA modification, RNA regulation and protein binding of expressed pseudogenes in human health and disease. Nucleic Acids Research, 2018, 46, D85-D91.	6.5	62
25	RMBase v2.0: deciphering the map of RNA modifications from epitranscriptome sequencing data. Nucleic Acids Research, 2018, 46, D327-D334.	6.5	327
26	miRâ€372 and miRâ€373 enhance the stemness of colorectal cancer cells by repressing differentiation signaling pathways. Molecular Oncology, 2018, 12, 1949-1964.	2.1	62
27	Cryptotanshinone suppresses key onco-proliferative and drug-resistant pathways of chronic myeloid leukemia by targeting STAT5 and STAT3 phosphorylation. Science China Life Sciences, 2018, 61, 999-1009.	2.3	30
28	Applications of RNA Indexes for Precision Oncology in Breast Cancer. Genomics, Proteomics and Bioinformatics, 2018, 16, 108-119.	3.0	16
29	Oridonin Triggers Chaperon-mediated Proteasomal Degradation of BCR-ABL in Leukemia. Scientific Reports, 2017, 7, 41525.	1.6	44
30	Oridonin induces autophagy via inhibition of glucose metabolism in p53-mutated colorectal cancer cells. Cell Death and Disease, 2017, 8, e2633-e2633.	2.7	91
31	ChIPBase v2.0: decoding transcriptional regulatory networks of non-coding RNAs and protein-coding genes from ChIP-seq data. Nucleic Acids Research, 2017, 45, D43-D50.	6.5	228
32	Computational Approaches to tRNA-Derived Small RNAs. Non-coding RNA, 2017, 3, 2.	1.3	20
33	Exo-miRExplorer: A Comprehensive Resource for Exploring and Comparatively Analyzing Exogenous MicroRNAs. Frontiers in Microbiology, 2017, 8, 126.	1.5	6
34	tRF2Cancer: A web server to detect tRNA-derived small RNA fragments (tRFs) and their expression in multiple cancers. Nucleic Acids Research, 2016, 44, W185-W193.	6.5	113
35	Long non-coding RNAs link extracellular matrix gene expression to ischemic cardiomyopathy. Cardiovascular Research, 2016, 112, 543-554.	1.8	64
36	27-Hydroxycholesterol increases Myc protein stability via suppressing PP2A, SCP1 and FBW7 transcription in MCF-7 breast cancer cells. Biochemical and Biophysical Research Communications, 2016, 480, 328-333.	1.0	13

#	Article	IF	CITATIONS
37	deepBase v2.0: identification, expression, evolution and function of small RNAs, LncRNAs and circular RNAs from deep-sequencing data. Nucleic Acids Research, 2016, 44, D196-D202.	6.5	203
38	RMBase: a resource for decoding the landscape of RNA modifications from high-throughput sequencing data. Nucleic Acids Research, 2016, 44, D259-D265.	6.5	166
39	Integrative analysis reveals clinical phenotypes and oncogenic potentials of long non-coding RNAs across 15 cancer types. Oncotarget, 2016, 7, 35044-35055.	0.8	17
40	CLIP: viewing the RNA world from an RNA-protein interactome perspective. Science China Life Sciences, 2015, 58, 75-88.	2.3	12
41	Cancer in the parasitic protozoans <i>Trypanosoma brucei</i> and <i>Toxoplasma gondii</i> . Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 8835-8842.	3.3	42
42	StarScan: a web server for scanning small RNA targets from degradome sequencing data. Nucleic Acids Research, 2015, 43, W480-W486.	6.5	36
43	Conservation and divergence of transcriptional coregulations between box C/D snoRNA and ribosomal protein genes inAscomycota. Rna, 2014, 20, 1376-1385.	1.6	6
44	Pachytene piRNAs instruct massive mRNA elimination during late spermiogenesis. Cell Research, 2014, 24, 680-700.	5.7	344
45	Inhibition of miR-17 and miR-20a by Oridonin Triggers Apoptosis and Reverses Chemoresistance by Derepressing BIM-S. Cancer Research, 2014, 74, 4409-4419.	0.4	69
46	The ribosomal protein rpl26 promoter is required for its 3′ sense terminus ncRNA transcription in Schizosaccharomyces pombe, implicating a new transcriptional mechanism for ncRNAs. Biochemical and Biophysical Research Communications, 2014, 444, 86-91.	1.0	4
47	starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein–RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Research, 2014, 42, D92-D97.	6.5	4,113
48	Both endo-siRNAs and tRNA-derived small RNAs are involved in the differentiation of primitive eukaryote <i>Giardia lamblia</i> . Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 14159-14164.	3.3	37
49	Discovery of Proteinââ,¬â€œlncRNA Interactions by Integrating Large-Scale CLIP-Seq and RNA-Seq Datasets. Frontiers in Bioengineering and Biotechnology, 2014, 2, 88.	2.0	73
50	A Contig-Based Strategy for the Genome-Wide Discovery of MicroRNAs without Complete Genome Resources. PLoS ONE, 2014, 9, e88179.	1.1	11
51	Rapid Birth-and-Death Evolution of Imprinted snoRNAs in the Prader-Willi Syndrome Locus: Implications for Neural Development in Euarchontoglires. PLoS ONE, 2014, 9, e100329.	1.1	19
52	Non-coding RNA annotation: Deciphering the second genetic code. Science China Life Sciences, 2013, 56, 865-866.	2.3	1
53	A Helm model for microRNA regulation in cell fate decision and conversion. Science China Life Sciences, 2013, 56, 897-906.	2.3	14
54	miR-125b, a Target of CDX2, Regulates Cell Differentiation through Repression of the Core Binding Factor in Hematopoietic Malignancies. Journal of Biological Chemistry, 2011, 286, 38253-38263.	1.6	63

#	Article	IF	CITATIONS
55	Molecular phylogeny of the entomopathogenic fungi of the genus Cordyceps (Ascomycota:) Tj ETQq1 1 0.784314	4 rgBT /Ov 1.6	verlock 10 Ti 8
56	Liver-enriched transcription factors regulate MicroRNA-122 that targets CUTL1 during liver development. Hepatology, 2010, 52, 1431-1442.	3.6	246
57	Deep Sequencing of Human Nuclear and Cytoplasmic Small RNAs Reveals an Unexpectedly Complex Subcellular Distribution of miRNAs and tRNA 3′ Trailers. PLoS ONE, 2010, 5, e10563.	1.1	265
58	Identification and evolutionary implication of four novel box H/ACA snoRNAs from Giardia lamblia. Science Bulletin, 2006, 51, 2451-2456.	1.7	5
59	Identification of three novel noncoding RNAs from Drosophila melanogaster. Science Bulletin, 2006, 51, 2737-2742.	1.7	6
60	Isolation of a Tomato Protease that May Be Involved in Proteolysis of 1-Aminocyclopropane-1-Carboxylate Synthase. Journal of Integrative Plant Biology, 2005, 47, 1220-1227.	4.1	2
61	Cleavage of the Carboxyl-Terminus of LEACS2, a Tomato 1-Aminocyclopropane-1-Carboxylic Acid Synthase Isomer, by a 64-kDa Tomato Metalloprotease Produces a Truncated but Active Enzyme. Journal of Integrative Plant Biology, 2005, 47, 1352-1363.	4.1	5
62	Identification of 20 microRNAs from Oryza sativa. Nucleic Acids Research, 2004, 32, 1688-1695.	6.5	154
63	Identification and functional analysis of a novel box C/D snoRNA fromSchizosaccharomyces pombe. Science Bulletin, 2004, 49, 1929-1936.	1.7	0
64	Genetic variability in Gymnodiniaceae ITS regions: implications for species identification and phylogenetic analysis. Marine Biology, 2004, 144, 215-224.	0.7	31
65	Phylogenetic diversity of Archaea in prawn farm sediment. Marine Biology, 2004, 146, 133-142.	0.7	11
66	Synthesis, DNA-binding and cleavage studies of macrocyclic copper(II) complexes. Transition Metal Chemistry, 2003, 28, 116-121.	0.7	58
67	Title is missing!. Transition Metal Chemistry, 2002, 27, 686-690.	0.7	26
68	Diversity and structure of the archaeal community in the leachate of a full-scale recirculating landfill as examined by direct 16S rRNA gene sequence retrieval. , 0, .		1
69	Wnt∫β-catenin pathway transactivates microRNA-150 that promotes EMT of colorectal cancer cells by suppressing CREB signaling. Oncotarget, 0, 7, 42513-42526.	0.8	55