
Dipendra Gautam

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8931955/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Common structural and construction deficiencies of Nepalese buildings. Innovative Infrastructure Solutions, 2016, 1, 1.	1.1	109
2	Structural performance and associated lessons to be learned from world earthquakes in Nepal after 25 April 2015 (MW 7.8) Gorkha earthquake. Engineering Failure Analysis, 2016, 68, 222-243.	1.8	87
3	Long-term resilience and loss assessment of highway bridges under multiple natural hazards. Structure and Infrastructure Engineering, 2020, 16, 626-641.	2.0	67
4	Derive empirical fragility functions for Nepali residential buildings. Engineering Structures, 2018, 171, 617-628.	2.6	65
5	Geological observations on large earthquakes along the Himalayan frontal fault near Kathmandu, Nepal. Earth and Planetary Science Letters, 2017, 457, 366-375.	1.8	57
6	Performance of Medium-to-High Rise Reinforced Concrete Frame Buildings with Masonry Infill in the 2015 Gorkha, Nepal, Earthquake. Earthquake Spectra, 2017, 33, 197-218.	1.6	49
7	Assessment of social vulnerability to natural hazards in Nepal. Natural Hazards and Earth System Sciences, 2017, 17, 2313-2320.	1.5	44
8	Field Reconnaissance after the 25 April 2015 MÂ7.8 Gorkha Earthquake. Seismological Research Letters, 2015, 86, 1506-1513.	0.8	43
9	Disaster resilient vernacular housing technology in Nepal. Geoenvironmental Disasters, 2016, 3, .	1.8	37
10	Observational fragility functions for residential stone masonry buildings in Nepal. Bulletin of Earthquake Engineering, 2018, 16, 4661-4673.	2.3	35
11	Soil liquefaction in Kathmandu valley due to 25 April 2015 Gorkha, Nepal earthquake. Soil Dynamics and Earthquake Engineering, 2017, 97, 37-47.	1.9	34
12	Multi-hazard vulnerability of structures and lifelines due to the 2015 Gorkha earthquake and 2017 central Nepal flash flood. Journal of Building Engineering, 2018, 17, 196-201.	1.6	34
13	Seismic Performance of Buildings in Nepal After the Gorkha Earthquake. , 2018, , 47-63.		28
14	Seismic Performance of World Heritage Sites in Kathmandu Valley during Gorkha Seismic Sequence of April–May 2015. Journal of Performance of Constructed Facilities, 2017, 31, .	1.0	27
15	Catchment-scale flood hazard mapping and flood vulnerability analysis of residential buildings: The case of Khando River in eastern Nepal. Journal of Hydrology: Regional Studies, 2020, 30, 100704.	1.0	27
16	Site effects and associated structural damage analysis in Kathmandu Valley, Nepal. Earthquake and Structures, 2016, 10, 1013-1032.	1.0	25
17	Empirical correlation between uncorrected standard penetration resistance (<i>N</i>) and shear wave velocity (<i>V</i> _S) for Kathmandu Valley, Nepal. Geomatics, Natural Hazards and Risk, 2017, 8, 496-508.	2.0	24
18	Seismic fragility of structural and non-structural elements of Nepali RC buildings. Engineering Structures, 2021, 232, 111879.	2.6	24

DIPENDRA GAUTAM

#	Article	IF	CITATIONS
19	Drawdown and Dynamics of Groundwater Table in Kathmandu Valley, Nepal. The Open Hydrology Journal, 2014, 8, 17-26.	0.4	24
20	Experimental study on properties of natural soils treated with cement kiln dust. Case Studies in Construction Materials, 2019, 10, e00223.	0.8	23
21	An empirical method for seismic vulnerability assessment of Nepali school buildings. Bulletin of Earthquake Engineering, 2020, 18, 5965-5982.	2.3	23
22	Unearthed lessons of 25 April 2015 Gorkha earthquake (<i>M_W</i> 7.8): geotechnical earthquake engineering perspectives. Geomatics, Natural Hazards and Risk, 2017, 8, 1358-1382.	2.0	22
23	Multi-Hazard Risk Assessment of Kathmandu Valley, Nepal. Sustainability, 2021, 13, 5369.	1.6	20
24	Preliminary assessment of seismic site effects in the fluvio-lacustrine sediments of Kathmandu valley, Nepal. Natural Hazards, 2016, 81, 1745-1769.	1.6	19
25	On seismic vulnerability of highway bridges in Nepal: 1988 Udaypur earthquake (M W 6.8) revisited. Soil Dynamics and Earthquake Engineering, 2017, 99, 168-171.	1.9	19
26	Revisiting Major Historical Earthquakes in Nepal. , 2018, , 1-17.		19
27	Empirical fragility functions for Nepali highway bridges affected by the 2015 Gorkha Earthquake. Soil Dynamics and Earthquake Engineering, 2019, 126, 105778.	1.9	18
28	Seismic Vulnerability of Vernacular Residential Buildings in Bhutan. Journal of Earthquake Engineering, 2022, 26, 5221-5236.	1.4	16
29	Speed and quality of recovery after the Gorkha Earthquake 2015 Nepal. International Journal of Disaster Risk Reduction, 2020, 50, 101689.	1.8	15
30	Seismic vulnerability of bhutanese vernacular stone masonry buildings: From damage observation to fragility analysis. Soil Dynamics and Earthquake Engineering, 2022, 160, 107351.	1.9	15
31	Windstorm vulnerability of residential buildings and infrastructures in south-central Nepal. Journal of Wind Engineering and Industrial Aerodynamics, 2020, 198, 104113.	1.7	14
32	Seismic vulnerability and retrofitting scheme for low-to-medium rise reinforced concrete buildings in Nepal. Journal of Building Engineering, 2019, 21, 186-199.	1.6	13
33	Seismic Strengthening of the Bagh Durbar Heritage Building in Kathmandu Following the Gorkha Earthquake Sequence. Buildings, 2019, 9, 128.	1.4	12
34	Component level seismic fragility functions and damage probability matrices for Nepali school buildings. Soil Dynamics and Earthquake Engineering, 2019, 120, 316-319.	1.9	12
35	Seismic Vulnerability of Urban Vernacular Buildings in Nepal: Case of Newari Construction. Journal of Earthquake Engineering, 2021, 25, 43-64.	1.4	12
36	Empirical seismic vulnerability analysis of infrastructure systems in Nepal. Bulletin of Earthquake Engineering, 2021, 19, 6113-6127.	2.3	12

DIPENDRA GAUTAM

#	Article	IF	CITATIONS
37	Local level multi-hazard zonation of Nepal. Geomatics, Natural Hazards and Risk, 2021, 12, 405-423.	2.0	11
38	Experimental characterization of monumental brick masonry in Nepal. Structures, 2020, 28, 1314-1321.	1.7	10
39	Probabilistic seismic liquefaction hazard assessment of Kathmandu valley, Nepal. Geomatics, Natural Hazards and Risk, 2020, 11, 259-271.	2.0	10
40	Generation of spectrum-compatible acceleration time history for Nepal. Comptes Rendus - Geoscience, 2017, 349, 198-201.	0.4	9
41	Bridging Multi-hazard Vulnerability and Sustainability: Approaches and Applications to Nepali Highway Bridges. , 2019, , 361-378.		9
42	Effect of Lintel Beam on Seismic Response of Reinforced Concrete Buildings with Semi-Interlocked and Unreinforced Brick Masonry Infills. Infrastructures, 2021, 6, 6.	1.4	9
43	Progress in sustainable structural engineering: a review. Innovative Infrastructure Solutions, 2021, 6, 1.	1.1	9
44	Seismic Fragility Analysis of Low-Rise RC Buildings with Brick Infills in High Seismic Region with Alluvial Deposits. Buildings, 2022, 12, 72.	1.4	9
45	Seismic fragility analysis of RC bridges in high seismic regions under horizontal and simultaneous horizontal and vertical excitations. Structures, 2022, 37, 284-294.	1.7	9
46	Indigenous water management system in Nepal: cultural dimensions of water distribution, cascaded reuse and harvesting in Bhaktapur City. Environment, Development and Sustainability, 2018, 20, 1889-1900.	2.7	8
47	Seismic Performance of High-Rise Condominium Building during the 2015 Gorkha Earthquake Sequence. Buildings, 2019, 9, 36.	1.4	8
48	Seismic Hazard in the Himalayan Intermontane Basins: An Example from Kathmandu Valley, Nepal. Disaster Risk Reduction, 2015, , 73-103.	0.2	8
49	Unzipping flood vulnerability and functionality loss: tale of struggle for existence of riparian buildings. Natural Hazards, 2023, 119, 989-1009.	1.6	8
50	Response and Rehabilitation of Historic Monuments After the Gorkha Earthquake. , 2018, , 65-94.		7
51	Effect of variation on infill masonry walls in the seismic performance of soft story RC building. Australian Journal of Structural Engineering, 2019, 20, 1-9.	0.4	7
52	In-plane behavior of various brick bonds in masonry walls. Innovative Infrastructure Solutions, 2020, 5, 1.	1.1	7
53	Assessing the Prospects of Transboundary Multihazard Dynamics: The Case of Bhotekoshi–Sunkoshi Watershed in Sino–Nepal Border Region. Sustainability, 2021, 13, 3670.	1.6	7
54	System Identification of a Residential Building in Kathmandu Using Aftershocks of 2015 Gorkha Earthquake and Triggered Noise Data. Geotechnical, Geological and Earthquake Engineering, 2019, , 233-247.	0.1	6

DIPENDRA GAUTAM

#	Article	IF	CITATIONS
55	Mechanical characterization of recycled concrete under various aggregate replacement scenarios. Cleaner Engineering and Technology, 2022, 7, 100428.	2.1	6
56	Ambient Vibration Measurements in Representative Buildings in Kathmandu Valley Following the Gorkha Earthquake. Journal of Performance of Constructed Facilities, 2018, 32, 04018028.	1.0	5
57	Shear wave velocity profiling and ground response analysis in Phuentsholing, Bhutan. Innovative Infrastructure Solutions, 2021, 6, 1.	1.1	5
58	From Tship Chim to Pa Chim: Seismic vulnerability and strengthening of Bhutanese vernacular buildings. , 2021, , 253-288.		5
59	System Identification and Seismic Performance Assessment of Representative RC Buildings in Kathmandu Valley. Frontiers in Built Environment, 2020, 6, .	1.2	5
60	Mapping surface motion parameters and liquefaction susceptibility in Tribhuvan International Airport, Nepal. Geomatics, Natural Hazards and Risk, 2017, 8, 1173-1184.	2.0	4
61	Past and Future of Earthquake Risk Reduction Policies and Intervention in Nepal. , 2018, , 173-182.		4
62	Seismic vulnerability of Himalayan stone masonry: Regional perspectives. , 2021, , 25-60.		4
63	Strong Far-Field Vertical Excitation and Building Damage: A Systematic Review and Future Avenues. Advances in Civil Engineering, 2021, 2021, 1-13.	0.4	4
64	Geohazard vulnerability and condition assessment of the Asian highway AH-48 in Bhutan. Geomatics, Natural Hazards and Risk, 2021, 12, 2904-2930.	2.0	4
65	Comparison between the seismic codes of Nepal, India, Japan, and EU. Asian Journal of Civil Engineering, 2019, 20, 301-312.	0.8	3
66	Simplified frame model for capacity assessment of masonry buildings. Soil Dynamics and Earthquake Engineering, 2020, 131, 106056.	1.9	3
67	The building features acquired from the indigenous technology contributing in the better performance during earthquake: a case study of Bhaktapur City. Journal of Science and Engineering, 2014, 2, 41-45.	0.0	2
68	Sustainability assessment of Bhutanese vernacular wattle and daub houses. Innovative Infrastructure Solutions, 2021, 6, 1.	1.1	2
69	System Identification and Finite Element Modelling of Damaged Bal Mandir Monument in Kathmandu After the 2015 Gorkha Earthquake. Lecture Notes in Civil Engineering, 2022, , 222-231.	0.3	2
70	Multiâ€hazard fragility analysis of RC bridges for high seismicity and high scouring scenarios. Journal of Engineering, 2022, 2022, 618-628.	0.6	2
71	Wind vulnerability and strengthening of Bhutanese vernacular roofs. Geomatics, Natural Hazards and Risk, 2022, 13, 1511-1534.	2.0	2
72	SYSTEM IDENTIFICATION OF CODE CONFORMING LOW-RISE RC BUILDING IN LALITPUR, NEPAL. , 2020, , .		1

5

#	Article	IF	CITATIONS
73	Failure Investigation of under Construction Prestressed Concrete Bridge in Chitwan, Nepal. Infrastructures, 2022, 7, 14.	1.4	1
74	Sensitivity analysis of input ground motion on surface motion parameters in high seismic regions: a case of Bhutan Himalaya. Natural Hazards and Earth System Sciences, 2022, 22, 1893-1909.	1.5	1
75	Editorial: Seismic Vulnerability Assessment and Retrofitting of Building Structures. Frontiers in Built Environment, 2021, 7, .	1.2	ο