
Joseph W Freeman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8931850/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hydrogels for Skeletal Muscle Regeneration. Regenerative Engineering and Translational Medicine, 2021, 7, 353-361.	1.6	17
2	Ligament Regenerative Engineering: Braiding Scalable and Tunable Bioengineered Ligaments Using a Bench-Top Braiding Machine. Regenerative Engineering and Translational Medicine, 2021, 7, 524-532.	1.6	24
3	Uric acid released from poly(ε aprolactone) fibers as a treatment platform for spinal cord injury. Journal of Tissue Engineering and Regenerative Medicine, 2021, 15, 14-23.	1.3	5
4	In vitro studies of Annona muricata L . extractâ€loaded electrospun scaffolds for localized treatment of breast cancer. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2021, 109, 2041-2056.	1.6	7
5	Structural Biology of the Tumor Microenvironment. Advances in Experimental Medicine and Biology, 2021, 1350, 91-100.	0.8	6
6	Investigation of the Short-term Effects of Heat Shock on Human Hamstring Tenocytes In Vitro. Regenerative Engineering and Translational Medicine, 2020, 6, 50-61.	1.6	0
7	Characterization of a prevascularized biomimetic tissue engineered scaffold for bone regeneration. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2020, 108, 1655-1668.	1.6	6
8	Three-Dimensional Porous Trabecular Scaffold Exhibits Osteoconductive Behaviors In Vitro. Regenerative Engineering and Translational Medicine, 2020, 6, 241-250.	1.6	2
9	Singleâ€walled carbon nanohorns modulate tenocyte cellular response and tendon biomechanics. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2020, 108, 1907-1914.	1.6	7
10	The Use of Alginate to Inhibit Mineralization for Eventual Vascular Development. Regenerative Engineering and Translational Medicine, 2020, 6, 154-163.	1.6	1
11	Investigating the Effects of Fertilized Egg Yolk Extract on Myoblast Proliferation and Differentiation. Regenerative Engineering and Translational Medicine, 2020, 6, 125-137.	1.6	2
12	Characterization and optimization of a positively charged poly (ethylene glycol)diacrylate hydrogel as an actuating muscle tissue engineering scaffold. Polymers for Advanced Technologies, 2019, 30, 2604-2612.	1.6	6
13	Decellularized Cortical Bone Scaffold Promotes Organized Neovascularization <i>In Vivo</i> . Tissue Engineering - Part A, 2019, 25, 964-977.	1.6	11
14	Optimizing C2C12 myoblast differentiation using polycaprolactone–polypyrrole copolymer scaffolds. Journal of Biomedical Materials Research - Part A, 2019, 107, 220-231.	2.1	26
15	Mechanical and biological evaluation of a hydroxyapatiteâ€reinforced scaffold for bone regeneration. Journal of Biomedical Materials Research - Part A, 2019, 107, 732-741.	2.1	34
16	A Wirelessly Tunable Electrical Stimulator for Ionic Electroactive Polymers. IEEE Sensors Journal, 2018, 18, 1930-1939.	2.4	1
17	Investigating processing techniques for bovine gelatin electrospun scaffolds for bone tissue regeneration. , 2017, 105, 1131-1140.		24
18	Characterization and optimization of actuating poly(ethylene glycol) diacrylate/acrylic acid hydrogels as artificial muscles. Polymer, 2017, 117, 331-341.	1.8	52

Joseph W Freeman

#	Article	IF	CITATIONS
19	Prolotherapy Induces an Inflammatory Response in Human Tenocytes In Vitro. Clinical Orthopaedics and Related Research, 2017, 475, 2117-2127.	0.7	24
20	Hypoxia impairs mesenchymal stromal cell-induced macrophage M1 to M2 transition. Technology, 2017, 05, 81-86.	1.4	14
21	Live demonstration: A frequency-based system for wireless electrical stimulation of iEAPs. , 2017, , .		1
22	Sub-failure Stretch Injury Response in Rat Achilles Tendon. Regenerative Engineering and Translational Medicine, 2017, 3, 239-246.	1.6	2
23	Crossâ€Talk Between Human Tenocytes and Bone Marrow Stromal Cells Potentiates Extracellular Matrix Remodeling In Vitro. Journal of Cellular Biochemistry, 2016, 117, 684-693.	1.2	22
24	In vitro characterization of electronically stimulated ionic electroactive polymers with application to muscle prosthesis. , 2016, , .		2
25	Tensile mechanical properties of collagen type I and its enzymatic crosslinks. Biophysical Chemistry, 2016, 214-215, 1-10.	1.5	26
26	An overview of recent patents on musculoskeletal interface tissue engineering. Connective Tissue Research, 2016, 57, 53-67.	1.1	9
27	Fabrication and Characterization of Three-Dimensional Electrospun Scaffolds for Bone Tissue Engineering. Regenerative Engineering and Translational Medicine, 2015, 1, 32-41.	1.6	12
28	Poly(3,4â€ethylenedioxythiophene) nanoparticle and poly(É∕â€caprolactone) electrospun scaffold characterization for skeletal muscle regeneration. Journal of Biomedical Materials Research - Part A, 2015, 103, 3633-3641.	2.1	29
29	Quantification of Strain Induced Damage in Medial Collateral Ligaments. Journal of Biomechanical Engineering, 2015, 137, .	0.6	8
30	A low drop-out regulator for subcutaneous electrical stimulation of nanofibers used in muscle prosthesis. , 2015, , .		4
31	<i>In Vivo</i> Skeletal Muscle Biocompatibility of Composite, Coaxial Electrospun, and Microfibrous Scaffolds. Tissue Engineering - Part A, 2014, 20, 1961-1970.	1.6	29
32	Mechanical enhancement of a tissue-engineered scaffold for bone regeneration. , 2014, , .		0
33	Mechanical recruitment of N- and C-crosslinks in collagen type I. Matrix Biology, 2014, 34, 161-169.	1.5	35
34	High elastic modulus nanoparticles: a novel tool for subfailure connective tissue matrix damage. Translational Research, 2014, 164, 244-257.	2.2	13
35	Fabrication and Characterization of Three Dimensional Electrospun Cortical Bone Scaffolds. Nanomaterials and the Environment, 2014, 2, .	0.3	1
36	Poly(<scp>d</scp> -lactide)/poly(caprolactone) nanofiber-thermogelling chitosan gel composite scaffolds for osteochondral tissue regeneration in a rat model. Journal of Bioactive and Compatible Polymers, 2013, 28, 115-125.	0.8	19

JOSEPH W FREEMAN

#	Article	IF	CITATIONS
37	Design and Analysis of Braid-Twist Collagen Scaffolds. Connective Tissue Research, 2012, 53, 255-266.	1.1	39
38	Fabrication and characterization of threeâ€dimensional electrospun scaffolds for bone tissue engineering. Journal of Biomedical Materials Research - Part A, 2012, 100A, 2097-2105.	2.1	23
39	Non-destructive real-time imaging of cell morphology for tissue-engineering applications. , 2011, , .		Ο
40	Rapid Mineralization of Electrospun Scaffolds for Bone Tissue Engineering. Journal of Biomaterials Science, Polymer Edition, 2011, 22, 1535-1550.	1.9	24
41	2D and 3D in vitro culture methods to investigate endothelial-cell enhanced tumor angiogenesis. , 2011, , .		4
42	Poly(acrylic acid)/poly(vinyl alcohol) compositions coaxially electrospun with poly(É›-caprolactone) and multi-walled carbon nanotubes to create nanoactuating scaffolds. Polymer, 2011, 52, 4736-4743.	1.8	30
43	Evaluation of a hydrogel–fiber composite for ACL tissue engineering. Journal of Biomechanics, 2011, 44, 694-699.	0.9	67
44	Recent Advancements in Ligament Replacement. Recent Patents on Biomedical Engineering, 2011, 4, 196-204.	0.5	4
45	Novel matrix based anterior cruciate ligament (ACL) regeneration. Soft Matter, 2010, 6, 5016.	1.2	32
46	Tissue Engineering of the Anterior Cruciate Ligament: The Viscoelastic Behavior and Cell Viability of a Novel Braid–Twist Scaffold. Journal of Biomaterials Science, Polymer Edition, 2009, 20, 1709-1728.	1.9	40
47	Tissue Engineering Options for Ligament Healing. Bone and Tissue Regeneration Insights, 2009, 2, BTRI.S2826.	3.0	5
48	Recent Advancements in Ligament Tissue Engineering: The Use of Various Techniques and Materials for ACL Repair. Recent Patents on Biomedical Engineering, 2008, 1, 18-23.	0.5	32
49	Tissue engineering of the anterior cruciate ligament using a braid–twist scaffold design. Journal of Biomechanics, 2007, 40, 2029-2036.	0.9	187
50	Ligament tissue engineering: An evolutionary materials science approach. Biomaterials, 2005, 26, 7530-7536.	5.7	278
51	The Role of Type I Collagen Molecular Structure in Tendon Elastic Energy Storage. Materials Research Society Symposia Proceedings, 2005, 874, 1.	0.1	4
52	Nanofabrication Techniques. , 0, , 1-24.		0

Nanofabrication Techniques., 0, , 1-24. 52