
Hiroyuki Kamiya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/893181/publications.pdf Version: 2024-02-01

ΗΙΡΟΥΙΙΚΙ ΚΛΜΙΥΛ

#	Article	IF	CITATIONS
1	Paradoxical role of the major DNA repair protein, OGG1, in action-at-a-distance mutation induction by 8-oxo-7,8-dihydroguanine. DNA Repair, 2022, 111, 103276.	1.3	6
2	Correction of monomeric enhanced green fluorescent protein (mEGFP) gene by short 5′-tailed duplexes. Journal of Bioscience and Bioengineering, 2022, 134, 175-181.	1.1	1
3	Similar frequency and signature of untargeted substitutions induced by abasic site analog under reduced human APE1 conditions. Journal of Toxicological Sciences, 2021, 46, 283-288.	0.7	7
4	Action-at-a-distance mutations at 5′-GpA-3′ sites induced by oxidised guanine in WRN-knockdown cells. Mutagenesis, 2021, 36, 349-357.	1.0	5
5	Gene correction by 5′-tailed duplexes with short editor oligodeoxyribonucleotides. Journal of Bioscience and Bioengineering, 2021, 132, 552-559.	1.1	3
6	Conventional plasmid DNAs with a CpGâ€containing backbone achieve durable transgene expression in mouse liver. Journal of Gene Medicine, 2020, 22, e3138.	1.4	4
7	Single-stranded DNA versus tailed duplex in sequence conversion of <i>lacZl̂±</i> DNA. Nucleosides, Nucleotides and Nucleic Acids, 2020, 39, 1245-1250.	0.4	4
8	New indicator Escherichia coli strain for rapid and accurate detection of supF mutations. Genes and Environment, 2020, 42, 28.	0.9	6
9	High-throughput analysis of DNA repair in microplates towards identification of inhibitors. Genes and Environment, 2020, 42, 11.	0.9	2
10	Tyrosyl-DNA phosphodiesterases are involved in mutagenic events at a ribonucleotide embedded into DNA in human cells. PLoS ONE, 2020, 15, e0244790.	1.1	1
11	No enhancing effects of plasmid-specific histone acetyltransferase recruitment system on transgene expression in vivo. Nucleosides, Nucleotides and Nucleic Acids, 2019, 38, 942-949.	0.4	1
12	Large deletions and untargeted substitutions induced by abasic site analog on leading versus lagging strand templates in human cells. Mutagenesis, 2019, 34, 421-429.	1.0	4
13	Effects of mismatches distant from the target position on gene correction with a 5′-tailed duplex. Journal of Bioscience and Bioengineering, 2018, 125, 619-623.	1.1	4
14	Reduction of Werner Syndrome Protein Enhances G:C → A:T Transition by <i>O</i> ⁶ -Methylguanine in Human Cells. Chemical Research in Toxicology, 2018, 31, 319-324.	1.7	13
15	Analysis of large deletion mutations induced by abasic site analog in human cells. Genes and Environment, 2018, 40, 24.	0.9	9
16	Durable Transgene Expression Driven by CpG-Free and -Containing Promoters in Plasmid DNA with CpG-Free Backbone. Biological and Pharmaceutical Bulletin, 2018, 41, 1489-1493.	0.6	4
17	Mutations induced by 8-oxo-7,8-dihydroguanine in WRN- and DNA polymerase λ-double knockdown cells. Mutagenesis, 2018, 33, 301-310.	1.0	9
18	Enhanced transgene expression by plasmid-specific recruitment of histone acetyltransferase. Journal of Bioscience and Bioengineering, 2017, 123, 277-280.	1.1	6

#	Article	IF	CITATIONS
19	Comparison of DNA fragments as donor DNAs upon sequence conversion of cleaved target DNA. Nucleosides, Nucleotides and Nucleic Acids, 2017, 36, 428-434.	0.4	2
20	Mutations induced by 8-hydroxyguanine (8-oxo-7,8-dihydroguanine), a representative oxidized base, in mammalian cells. Genes and Environment, 2017, 39, 2.	0.9	63
21	In vivo selection of active deoxyribonucleoside kinase by a mutagenic nucleoside analog. Journal of Biotechnology, 2016, 228, 52-57.	1.9	1
22	Cleavage of Target DNA Promotes Sequence Conversion with a Tailed Duplex. Biological and Pharmaceutical Bulletin, 2016, 39, 1392-1395.	0.6	5
23	Insertion and Deletion Mismatches Distant from the Target Position Improve Gene Correction with a Tailed Duplex. Nucleosides, Nucleotides and Nucleic Acids, 2016, 35, 379-388.	0.4	5
24	Induction of action-at-a-distance mutagenesis by 8-oxo-7,8-dihydroguanine in DNA pol λ-knockdown cells. Genes and Environment, 2015, 37, 10.	0.9	9
25	Transcription of 4′-thioDNA templates to natural RNA in vitro and in mammalian cells. Chemical Communications, 2015, 51, 7887-7890.	2.2	23
26	Action-at-a-Distance Mutagenesis Induced by Oxidized Guanine in Werner Syndrome Protein-Reduced Human Cells. Chemical Research in Toxicology, 2015, 28, 621-628.	1.7	14
27	Anatomy of plasmid DNAs with anti-silencing elements. International Journal of Pharmaceutics, 2014, 464, 27-33.	2.6	9
28	Suppression of Short Tract Gene Conversion in Episomal DNA by p53 Reduction. Genes and Environment, 2014, 36, 65-68.	0.9	0
29	Enhanced transgene expression from chromatinized plasmid DNA in mouse liver. International Journal of Pharmaceutics, 2013, 441, 146-150.	2.6	2
30	Correlation between transgen expression and plasmid DNA loss in mouse liver. Journal of Gene Medicine, 2013, 15, 242-248.	1.4	8
31	Reduced Plasma Glucose by Asparagine Synthetase Knockdown in the Mouse Liver. Biological and Pharmaceutical Bulletin, 2013, 36, 2009-2011.	0.6	4
32	DNA Polymerase ^ ^lambda; Promotes Mutagenesis Induced by 8-Oxo-7,8-dihydroguanine (8-hydroxyguanine) Paired with Adenine. Genes and Environment, 2013, 35, 105-109.	0.9	3
33	Human MTH3 (NUDT18) Protein Hydrolyzes Oxidized Forms of Guanosine and Deoxyguanosine Diphosphates. Journal of Biological Chemistry, 2012, 287, 21541-21549.	1.6	90
34	Effects of Endogenous Proteins and microRNA Target Sequence in a Positive Feedback System. Biological and Pharmaceutical Bulletin, 2012, 35, 1534-1538.	0.6	4
35	CREB-binding protein transcription activation domain for enhanced transgene expression by a positive feedback system. Journal of Biotechnology, 2012, 157, 7-11.	1.9	5
36	Mutagenic Bypass of 8-Oxo-7,8-dihydroguanine (8-Hydroxyguanine) by DNA Polymerase κ in Human Cells. Chemical Research in Toxicology, 2012, 25, 1771-1776.	1.7	16

#	Article	IF	CITATIONS
37	Insights into substrate recognition by the Escherichia coli Orf135 protein through its solution structure. Biochemical and Biophysical Research Communications, 2012, 420, 263-268.	1.0	3
38	1H, 13C and 15N NMR assignments of the Escherichia coli Orf135 protein. Biomolecular NMR Assignments, 2012, 6, 1-4.	0.4	1
39	Unexpectedly Weak Impacts of Decreased p53 and Retinoblastoma Protein Levels on Mutagenesis by 8-Oxo-7,8-dihydroguanine (8-Hydroxyguanine). Genes and Environment, 2011, 33, 103-108.	0.9	14
40	Correction of Frameshift Mutations with Tailed Duplex DNAs. Biological and Pharmaceutical Bulletin, 2011, 34, 1465-1468.	0.6	3
41	Mutagenicity of secondary oxidation products of 8-oxo-7,8-dihydro-2′-deoxyguanosine 5′-triphosphate (8-hydroxy-2′- deoxyguanosine 5′-triphosphate). Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2011, 714, 11-16.	0.4	9
42	Effects of insulator cHS4 on transgene expression from plasmid DNA in a positive feedback system. Journal of Bioscience and Bioengineering, 2011, 112, 432-434.	1.1	6
43	Diverse substrate recognition and hydrolysis mechanisms of human NUDT5. Nucleic Acids Research, 2011, 39, 8972-8983.	6.5	26
44	DNA Microarray Analysis of Whole Blood Cells and Insulin-Sensitive Tissues Reveals the Usefulness of Blood RNA Profiling as a Source of Markers for Predicting Type 2 Diabetes. Biological and Pharmaceutical Bulletin, 2010, 33, 1033-1042.	0.6	16
45	Cytotoxic Effect of Drosophila Deoxynucleoside Kinase Gene on Replicating Plasmid in HeLa Cells. Biological and Pharmaceutical Bulletin, 2010, 33, 1223-1227.	0.6	4
46	Transgene expression efficiency from plasmid DNA delivered as a complex with histone H3. International Journal of Pharmaceutics, 2010, 392, 249-253.	2.6	8
47	Roles of specialized DNA polymerases in mutagenesis by 8-hydroxyguanine in human cells. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2010, 686, 90-95.	0.4	33
48	Effects of base excision repair proteins on mutagenesis by 8-oxo-7,8-dihydroguanine (8-hydroxyguanine) paired with cytosine and adenine. DNA Repair, 2010, 9, 542-550.	1.3	39
49	Suppression of mutagenesis by 8-hydroxy-2′-deoxyguanosine 5′-triphosphate (7,8-dihydro-8-oxo-2′-deoxyguanosine 5′-triphosphate) by human MTH1, MTH2, and NUDT5. Free Radical Biology and Medicine, 2010, 48, 1197-1201.	1.3	50
50	Targeted sequence alteration of a chromosomal locus in mouse liver. International Journal of Pharmaceutics, 2010, 387, 180-183.	2.6	10
51	Positive Feedback System Provides Efficient and Persistent Transgene Expression. Molecular Pharmaceutics, 2010, 7, 1125-1132.	2.3	10
52	Mutagenicity of oxidized DNA precursors in living cells: Roles of nucleotide pool sanitization and DNA repair enzymes, and translesion synthesis DNA polymerases. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2010, 703, 32-36.	0.9	29
53	Involvement of specialized DNA polymerases in mutagenesis by 8-hydroxy-dGTP in human cells. DNA Repair, 2009, 8, 637-642.	1.3	39
54	NUDT5 hydrolyzes oxidized deoxyribonucleoside diphosphates with broad substrate specificity. DNA Repair, 2009, 8, 1250-1254.	1.3	24

#	Article	IF	CITATIONS
55	Incorporation of 8-hydroxyguanosine (8-oxo-7,8-dihydroguanosine) 5′-triphosphate by bacterial and human RNA polymerases. Free Radical Biology and Medicine, 2009, 46, 1703-1707.	1.3	18
56	Effects of non-B DNA sequences on transgene expression. Journal of Bioscience and Bioengineering, 2009, 108, 20-23.	1.1	8
57	PK–PD modeling of 1-(3-C-ethynyl-β-d-ribo-pentofuranosyl)cytosine and the enhanced antitumor effect of its phospholipid derivatives in long-circulating liposomes. International Journal of Pharmaceutics, 2009, 377, 52-59.	2.6	6
58	Effects of carriers on transgene expression from plasmids containing a DNA sequence with high histone affinity. International Journal of Pharmaceutics, 2009, 376, 99-103.	2.6	3
59	Base excision repair enzyme endonuclease III suppresses mutagenesis caused by 8-hydroxy-dGTP. DNA Repair, 2008, 7, 88-94.	1.3	8
60	Specificity of mutations induced by incorporation of oxidized dNTPs into DNA by human DNA polymerase Ε. DNA Repair, 2008, 7, 497-506.	1.3	16
61	MITO-Porter: A liposome-based carrier system for delivery of macromolecules into mitochondria via membrane fusion. Biochimica Et Biophysica Acta - Biomembranes, 2008, 1778, 423-432.	1.4	249
62	Improved Gene Correction Efficiency with a Tailed Duplex DNA Fragment. Biochemistry, 2008, 47, 8754-8759.	1.2	18
63	Effects of Target Sequence and Sense versus Anti-sense Strands on Gene Correction with Single-stranded DNA Fragments. Journal of Biochemistry, 2008, 144, 431-436.	0.9	8
64	DNA Microarray Analysis of Type 2 Diabetes-Related Genes Co-regulated between White Blood Cells and Livers of Diabetic Otsuka Long-Evans Tokushima Fatty (OLETF) Rats. Biological and Pharmaceutical Bulletin, 2007, 30, 763-771.	0.6	8
65	Induction of Various Mutations during PCRs with Manganese and 8-Hydroxy-dGTP. Biological and Pharmaceutical Bulletin, 2007, 30, 842-844.	0.6	5
66	The location of the left-handedly curved DNA sequence affects exogenous DNA expression in vivo. Archives of Biochemistry and Biophysics, 2007, 461, 7-12.	1.4	22
67	Mitochondrial drug delivery and mitochondrial disease therapy – An approach to liposome-based delivery targeted to mitochondria. Mitochondrion, 2007, 7, 63-71.	1.6	108
68	Efficient and Erroneous Incorporation of Oxidized DNA Precursors by Human DNA Polymerase Î. Biochemistry, 2007, 46, 5515-5522.	1.2	34
69	2-Hydroxy-2â€~-deoxyadenosine 5â€~-Triphosphate Enhances A·T → C·G Mutations Caused by 8-Hydroxy-2â€~-deoxyguanosine 5â€~-Triphosphate by Suppressing Its Degradation upon Replication in a HeLa Extract. Biochemistry, 2007, 46, 6639-6646.	1.2	8
70	Cell cycle dependent transcription, a determinant factor of heterogeneity in cationic lipid-mediated transgene expression. Journal of Gene Medicine, 2007, 9, 197-207.	1.4	35
71	Mutagenic effects of 8-hydroxy-dGTP in live mammalian cells. Free Radical Biology and Medicine, 2007, 42, 1552-1560.	1.3	38
72	Effects of 8-hydroxy-GTP and 2-hydroxy-ATP on in vitro transcription. Free Radical Biology and Medicine, 2007, 43, 837-843.	1.3	9

#	Article	IF	CITATIONS
73	UvrA and UvrB enhance mutations induced by oxidized deoxyribonucleotides. DNA Repair, 2007, 6, 1786-1793.	1.3	12
74	Mutations Induced by Oxidized DNA Precursors and Their Prevention by Nucleotide Pool Sanitization Enzymes. Genes and Environment, 2007, 29, 133-140.	0.9	19
75	Correlation between the Phosphohydrolase Activity of the Escherichia coli Orf135 (NudG) Protein and Mutation Suppression. Genes and Environment, 2007, 29, 63-66.	0.9	2
76	Recognition of Nucleotide Analogs Containing the 7,8-Dihydro-8-oxo Structure by the Human MTH1 Protein. Journal of Biochemistry, 2006, 140, 843-849.	0.9	8
77	Intranuclear disposition of exogenous DNA in vivo: Silencing, methylation and fragmentation. FEBS Letters, 2006, 580, 918-922.	1.3	38
78	Effects of Overexpression and Antisense RNA Expression of Orf17, a MutT-Type Enzyme. Biological and Pharmaceutical Bulletin, 2006, 29, 1087-1091.	0.6	10
79	Genome Wide Expression Analysis of White Blood Cells and Liver of Pre-diabetic Otsuka Long-Evans Tokushima Fatty (OLETF) Rats Using a cDNA Microarray. Biological and Pharmaceutical Bulletin, 2006, 29, 2451-2459.	0.6	8
80	Silencing of Exogenous DNA in Cultured Cells. Biological and Pharmaceutical Bulletin, 2006, 29, 1294-1296.	0.6	9
81	Crystallization and preliminary X-ray analysis of human MTH1 complexed with two oxidized nucleotides, 8-oxo-dGMP and 2-oxo-dATP. Acta Crystallographica Section F: Structural Biology Communications, 2006, 62, 1283-1285.	0.7	7
82	Transient Expression ofDrosophila melanogasterDeoxynucleoside Kinase Gene Enhances Cytotoxicity of Nucleoside Analogs. Nucleosides, Nucleotides and Nucleic Acids, 2006, 25, 553-560.	0.4	6
83	Involvement of Y-Family DNA Polymerases in Mutagenesis Caused by Oxidized Nucleotides in Escherichia coli. Journal of Bacteriology, 2006, 188, 4992-4995.	1.0	46
84	Induction of Substitution and Deletion Mutations by 2-Hydroxyadenine during Replication in a HeLa Extract. Genes and Environment, 2006, 28, 92-96.	0.9	1
85	Correction of Frameshift Mutations with Single-Stranded and Double-Stranded DNA Fragments Prepared from Phagemid/Plasmid DNAs. Biological and Pharmaceutical Bulletin, 2005, 28, 1958-1962.	0.6	10
86	Effect of Methylated Adenine in Plasmid DNA on Transgene Expression in Mice. Biological and Pharmaceutical Bulletin, 2005, 28, 2019-2022.	0.6	5
87	In Vivo Mutagenicities of Damaged Nucleotides Produced by Nitric Oxide and Ionizing Radiation. Biological and Pharmaceutical Bulletin, 2005, 28, 520-522.	0.6	12
88	Kinetic analysis of protein production after DNA transfection. International Journal of Pharmaceutics, 2005, 299, 34-40.	2.6	14
89	Mitochondrial delivery of mastoparan with transferrin liposomes equipped with a pH-sensitive fusogenic peptide for selective cancer therapy. International Journal of Pharmaceutics, 2005, 303, 1-7.	2.6	87
90	Increased SFHR gene correction efficiency with sense single-stranded DNA. Journal of Gene Medicine, 2005, 7, 486-493.	1.4	36

#	Article	IF	CITATIONS
91	New NTP analogs: the synthesis of 4'-thioUTP and 4'-thioCTP and their utility for SELEX. Nucleic Acids Research, 2005, 33, 2942-2951.	6.5	97
92	Amino Acid Residues Involved in Substrate Recognition of theEscherichia coliOrf135 Proteinâ€. Biochemistry, 2005, 44, 5683-5689.	1.2	13
93	Mutagenesis Induced by Oxidized DNA Precursors:  Roles of Y Family DNA Polymerases in Escherichia coli. Chemical Research in Toxicology, 2005, 18, 1271-1278.	1.7	15
94	Cytokine induction by a bacterial DNA-specific modified base. Biochemical and Biophysical Research Communications, 2005, 326, 777-781.	1.0	16
95	Factors affecting SFHR gene correction efficiency with single-stranded DNA fragment. Biochemical and Biophysical Research Communications, 2005, 336, 1194-1200.	1.0	13
96	Dual hydrolysis of diphosphate and triphosphate derivatives of oxidized deoxyadenosine by Orf17 (NtpA), a MutT-type enzyme. DNA Repair, 2005, 4, 33-39.	1.3	27
97	RNA interference induced by siRNAs modified with 4′-thioribonucleosides in cultured mammalian cells. FEBS Letters, 2005, 579, 3115-3118.	1.3	77
98	Structure of Human MTH1, a Nudix Family Hydrolase That Selectively Degrades Oxidized Purine Nucleoside Triphosphates. Journal of Biological Chemistry, 2004, 279, 33806-33815.	1.6	49
99	Increased A:T->C:G Mutations in the mutT Strain upon 8-Hydroxy-dGTP Treatment: Direct Evidence for MutT Involvement in the Prevention of Mutations by Oxidized dGTP. Journal of Biochemistry, 2004, 136, 359-362.	0.9	21
100	Pharmacokinetic Modeling of Species-dependent Enhanced Bioavailability of Trifluorothymidine by Thymidine Phosphorylase Inhibitor. Drug Metabolism and Pharmacokinetics, 2004, 19, 206-215.	1.1	8
101	Nucleosides and nucleotides. Part 226: Alternate-strand triple-helix formation by 3â€2-3â€2-linked oligodeoxynucleotides composed of asymmetrical sequences. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 3333-3336.	1.0	1
102	Characterization of a nudix hydrolase from Deinococcus radiodurans with a marked specificity for (deoxy)ribonucleoside 5'-diphosphates. BMC Biochemistry, 2004, 5, 7.	4.4	23
103	Transferrin-Modified Liposomes Equipped with a pH-Sensitive Fusogenic Peptide:  An Artificial Viral-like Delivery System. Biochemistry, 2004, 43, 5618-5628.	1.2	268
104	Important amino acids in the phosphohydrolase module of Escherichia coli Orf135. Biochemical and Biophysical Research Communications, 2004, 323, 1063-1068.	1.0	10
105	Probing the Substrate Recognition Mechanism of the Human MTH1 Protein by Nucleotide Analogs. Journal of Molecular Biology, 2004, 336, 843-850.	2.0	27
106	Induction of Transition and Transversion Mutations during Random Mutagenesis PCR by the Addition of 2-Hydroxy-dATP. Biological and Pharmaceutical Bulletin, 2004, 27, 621-623.	0.6	6
107	Mutagenicities of 8-Hydroxyguanine and 2-Hydroxyadenine Produced by Reactive Oxygen Species. Biological and Pharmaceutical Bulletin, 2004, 27, 475-479.	0.6	37
108	Pharmacokinetic and pharmacodynamic considerations in gene therapy. Drug Discovery Today, 2003, 8, 990-996.	3.2	117

#	Article	IF	CITATIONS
109	Suppression of spontaneous and hydrogen peroxide-induced mutations by a MutT-type nucleotide pool sanitization enzyme, the Escherichia coli Orf135 protein. Genes To Cells, 2003, 8, 941-950.	0.5	38
110	Erroneous incorporation of oxidized DNA precursors by Yâ€family DNA polymerases. EMBO Reports, 2003, 4, 269-273.	2.0	69
111	No Enhancement of Nuclear Entry by Direct Conjugation of a Nuclear Localization Signal Peptide to Linearized DNA. Bioconjugate Chemistry, 2003, 14, 1197-1202.	1.8	87
112	Mutagenic potentials of damaged nucleic acids produced by reactive oxygen/nitrogen species: approaches using synthetic oligonucleotides and nucleotides: SURVEY AND SUMMARY. Nucleic Acids Research, 2003, 31, 517-531.	6.5	233
113	Mutations induced by 2-hydroxy-dATP during in vitro replication with a HeLa extract. Nucleic Acids Symposium Series, 2003, 3, 325-326.	0.3	О
114	Mutagenic effects of 2-hydroxy-dATP on replication in a HeLa extract: induction of substitution and deletion mutations. Nucleic Acids Research, 2003, 31, 2570-2575.	6.5	26
115	Calpain 10 as a Predictive Gene for Type 2 Diabetes: Evidence from a Novel Screening System Using White Blood Cells of Otsuka Long-Evans Tokushima Fatty (OLETF) Rats. Biological and Pharmaceutical Bulletin, 2003, 26, 1765-1768.	0.6	14
116	An oxidized nucleotide affects DNA replication through activation of protein kinases in Xenopus egg lysates. Nucleic Acids Research, 2002, 30, 569-573.	6.5	7
117	Mutagenicity of 5-Formylcytosine, an Oxidation Product of 5-Methylcytosine, in DNA in Mammalian Cells. Journal of Biochemistry, 2002, 132, 551-555.	0.9	44
118	Visualization of intracellular trafficking of exogenous DNA delivered by cationic liposomes. Biochemical and Biophysical Research Communications, 2002, 298, 591-597.	1.0	50
119	Induction of T → G and T → A transversions by 5-formyluracil in mammalian cells. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2002, 513, 213-222.	0.9	43
120	Troglitazone suppresses cell growth of KU812 cells independently of PPARÎ ³ . European Journal of Pharmacology, 2002, 436, 7-13.	1.7	51
121	Pharmacokinetics of Targeting with Liposomes. Critical Reviews in Therapeutic Drug Carrier Systems, 2002, 19, 235-275.	1.2	12
122	Hydrolysis of Oxidized Nucleotides by the Escherichia coli Orf135 Protein. Biochemical and Biophysical Research Communications, 2001, 288, 499-502.	1.0	39
123	2-Hydroxyadenine in DNA is a Very Poor Substrate of the Escherichia coli MutY Protein. Journal of Radiation Research, 2000, 41, 349-354.	0.8	10
124	Methylglyoxal induces G:C to C:G and G:C to T:A transversions in the supF gene on a shuttle vector plasmid replicated in mammalian cells. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2000, 468, 173-182.	0.9	71
125	Two DNA Polymerases ofEscherichia coliDisplay Distinct Misinsertion Specificities for 2-Hydroxy-dATP during DNA Synthesisâ€. Biochemistry, 2000, 39, 9508-9513.	1.2	32
126	The Oxidized Forms of dATP Are Substrates for the Human MutT Homologue, the hMTH1 Protein. Journal of Biological Chemistry, 1999, 274, 18201-18205.	1.6	204

#	Article	IF	CITATIONS
127	Preparation of 8-Hydroxy-dGTP and 2-Hydroxy-dATP by a Phosphate Transfer Reaction by Nucleoside-Diphosphate Kinase. Nucleosides & Nucleotides, 1999, 18, 307-310.	0.5	7
128	2-Hydroxyadenine, a mutagenic form of oxidative DNA damage, is not repaired by a glycosylase type mechanism in rat organs. Mutation Research DNA Repair, 1998, 408, 121-127.	3.8	8
129	Nucleotide Excision Repair Proteins May Be Involved in the Fixation of Glyoxal-Induced Mutagenesis inEscherichia coli. Biochemical and Biophysical Research Communications, 1998, 248, 412-417.	1.0	23
130	The mutations induced by oxidatively damaged nucleotides, 5-formyl-dUTP and 5-hydroxy-dCTP, in Escherichia coli. Nucleic Acids Research, 1998, 26, 4582-4587.	6.5	75
131	Induction of Chromosomal Gene Mutations in Escherichia coli by Direct Incorporation of Oxidatively Damaged Nucleotides. Journal of Biological Chemistry, 1998, 273, 11069-11074.	1.6	105
132	Mutations Induced by 2-Hydroxyadenine on a Shuttle Vector during Leading and Lagging Strand Syntheses in Mammalian Cells. Biochemistry, 1997, 36, 11125-11130.	1.2	64
133	Leading versus lagging strand mutagenesis induced by 7,8-dihydro-8-oxo-2′-deoxyguanosine in Escherichia coli. Journal of Molecular Biology, 1997, 265, 302-309.	2.0	47
134	Comparison of Oxidation Products from DNA Components by .GAMMAIrradiation and Fenton-Type Reactions Journal of Radiation Research, 1997, 38, 121-131.	0.8	86
135	Mutational specificity of glyoxal, a product of DNA oxidation, in the lacI gene of wild-type Escherichia coli W3110. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1997, 377, 255-262.	0.4	48
136	Synthesis of a Phosphoramidite Coupling Unit of the Pyrimidine (6â^'4) Pyrimidone Photoproduct and Its Incorporation into Oligodeoxynucleotides. Journal of the American Chemical Society, 1996, 118, 7642-7643.	6.6	105
137	Effects of sequence contexts on misincorporation of nucleotides opposite 2-hydroxyadenine. FEBS Letters, 1996, 391, 113-116.	1.3	49
138	Novel DNA damage mediated by oxidation of an 8-oxoguanine residue. Chemical Communications, 1996, , 265.	2.2	11
139	Comparison of Incorporation and Extension of Nucleotides in vitro opposite 8-Hydroxyguanine (7,8-Dihydro-8-oxoguanine) in Hot Spots of the c-Ha-ras Gene. Japanese Journal of Cancer Research, 1995, 86, 270-276.	1.7	31
140	Formation of 2-Hydroxydeoxyadenosine Triphosphate, an Oxidatively Damaged Nucleotide, and Its Incorporation by DNA Polymerases. Journal of Biological Chemistry, 1995, 270, 19446-19450.	1.6	149
141	Formation of a mutagen, glyoxal, from DNA treated with oxygen free radicals. Carcinogenesis, 1995, 16, 2251-2253.	1.3	52
142	Misincorporation of dAMP opposite 2-hydroxyadenine, an oxidative form of adenine. Nucleic Acids Research, 1995, 23, 761-766.	6.5	71
143	8-Hydroxyguanine (7,8-dihydro-8-oxoguanine) in hot spots of the c-Ha-ras gene: effects of sequence contexts on mutation spectra. Carcinogenesis, 1995, 16, 883-889.	1.3	132
144	8-Hydroxyadenine (7, 8-dihydro-8-Oxoadenine) induces misincorporation inin vitroDNA synthesis and mutations in NIH 3T3 cells. Nucleic Acids Research, 1995, 23, 2893-2899.	6.5	137

ΗΙΓΟΥUKI ΚΑΜΙΥΑ

#	Article	IF	CITATIONS
145	Nucleotide Incorporation Opposite Degenerate Bases byTaqDNA Polymerase. Nucleosides & Nucleotides, 1994, 13, 1483-1492.	0.5	5
146	Synthesis and Thermodynamic Stabilities of Damaged DNA Involving 8-Hydroxyguanine (7,8-Dihydro-8-Oxoguanine) in a <i>ras</i> -Gene Fragments. Nucleosides & Nucleotides, 1994, 13, 1517-1534.	0.5	34
147	Mutation-spectrum of a true abasic site in codon 12 of a c-Ha-rasgene in mammalian cells. FEBS Letters, 1993, 328, 125-129.	1.3	15
148	Cyclobutane thymine dimers in arasproto-oncogene hot spot activate the gene by point mutation. Nucleic Acids Research, 1993, 21, 2355-2361.	6.5	22
149	An abasic site analogue activates a c-Ha-rasgene by a point mutation at modified and adjacent positions. Nucleic Acids Research, 1992, 20, 4409-4415.	6.5	46
150	In vitro Replication Study of Modified bases in ras Sequences Chemical and Pharmaceutical Bulletin, 1992, 40, 2792-2795.	0.6	53
151	Mutation Induced by Deoxyxanthosine in Codon 12 of A Synthetic c-Ha-ras Gene. Nucleosides & Nucleotides, 1992, 11, 247-260.	0.5	29
152	Ribozymes designed to inhibit transformation of NIH3T3 cells by the activated c-Ha-ras gene. Gene, 1992, 117, 179-184.	1.0	73
153	Transforming Activity of a Synthetic c-Ha-ras Gene Containing O6-Methylguanine in Codon 12. Japanese Journal of Cancer Research, 1991, 82, 997-1002.	1.7	11
154	A Simple, General Method for Detecting Retroviral RNAs Expressed in Cells. Japanese Journal of Cancer Research, 1990, 81, 232-237.	1.7	1
155	Design of RNA enzymes distinguishing a single base mutation in RNA. Nucleic Acids Research, 1989, 17, 7059-7069.	6.5	142
156	Synthesis of a gene for the protein kinase domain of the epidermal growth factor receptor and its expression in Escherichia coli. FEBS Journal, 1989, 184, 361-365.	0.2	3
157	Transformation of NIH3T3 Cells with Synthetic c-Ha-rasGenes. Japanese Journal of Cancer Research, 1989, 80, 200-203.	1.7	17
158	Conversion of the guanine nucleotide binding sites of ras protein resulting in the reduction of base specificity. Protein Engineering, Design and Selection, 1988, 2, 227-231.	1.0	1
159	Overproduction of cellular and activated Ha-ras proteins by mutating a synthetic gene Chemical and Pharmaceutical Bulletin, 1987, 35, 4878-4882.	0.6	18
160	Programmed Packaging: A New Drug Delivery System and its Application to Gene Therapy. , 0, , 1521-1536.		5